Flexural Vibration Band Gaps in a Parallel Double-Beam Periodic Structure With Local Resonators on Elastic Foundations

被引:1
作者
Zhu, Hongping [1 ]
Shen, Zehui [1 ]
Weng, Shun [1 ]
Zhang, Ying [1 ]
Luo, Hao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Civil & Hydraul Engn, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Parallel double-beam periodic structure; Band gap; Local resonators; Plane wave expansion method; Foundation stiffness; WAVE-PROPAGATION; BEHAVIOR;
D O I
10.1007/s42417-024-01603-w
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
PurposeTo further investigate the band gaps within the low frequency ranges for periodic double beams structure, a novel parallel double-beam periodic structure with periodically local resonators on elastic foundations is proposed and studied in this paper.MethodsThe band structure of the infinite double-beam system is obtained by the plane wave expansion method. Then the existence of band gaps is verified by analysing the transmission characteristic obtained through finite element analysis on the double-beam system. Furthermore, the band gap formation mechanism is studied in terms of the eigenmodes and transverse deformation pattern. Simple calculation formulas of the starting and ending frequencies of the band gaps are derived based on the eigenmodes. Parametric studies are also conducted to investigate the structural and foundation properties on the flexible vibration band gap characteristics.ResultsIt indicates that alterations in foundation stiffness directly affect the vibration mode of the structure, consequently leading to modifications in the band gap. Modifying the frequencies of band gaps by tuning the stiffness of the springs connected with the two beams is also feasible. The bounding frequencies f1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{1}$$\end{document} to f5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{5}$$\end{document} can be determined from the band structure. The lattice constant a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document} is insensitive to f1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{1}$$\end{document}f2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{2}$$\end{document} and f3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{3}$$\end{document}. The bounding frequencies f4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{4}$$\end{document} and f5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{5}$$\end{document} decrease as the lattice constant increases. The foundation stiffness kf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{f}$$\end{document} is equal to 80kN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$80 kN$$\end{document}, the band gap reaches its maximum of 93.8 Hz.ConclusionThe research provides a valuable reference for the vibration control of parallel double-beam periodic structures with local resonators, providing a foundation for future engineering applications.
引用
收藏
页数:17
相关论文
共 43 条
[21]   On the control of the first Bragg band gap in periodic continuously corrugated beam for flexural vibration [J].
Pelat, Adrien ;
Gallot, Thomas ;
Gautier, Francois .
JOURNAL OF SOUND AND VIBRATION, 2019, 446 :249-262
[22]   BAND GAP FORMATION IN METAMATERIAL BEAM WITH TORSIONAL LOCAL RESONATORS FOR VIBRATION SUPPRESSION [J].
Jian, Yupei ;
Hu, Guobiao ;
Tang, Lihua ;
Aw, Kean C. .
PROCEEDINGS OF THE ASME 2020 CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS (SMASIS2020), 2020,
[23]   Band-gap property of a novel elastic metamaterial beam with X-shaped local resonators [J].
Wu, Zhijing ;
Liu, Wenyu ;
Li, Fengming ;
Zhang, Chuanzeng .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 134
[24]   Coupled flexural-torsional vibration band gap in periodic beam including warping effect [J].
Fang Jian-Yu ;
Yu Dian-Long ;
Han Xiao-Yun ;
Cai Li .
CHINESE PHYSICS B, 2009, 18 (04) :1316-1321
[25]   Rigid-Elastic Combined Metamaterial Beam With Tunable Band Gaps for Broadband Vibration Suppression [J].
Zhang, Jiazhen ;
Peng, Xuzhang ;
Yu, Dewen ;
Hu, Guobiao ;
Yang, Yaowen .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2024, 146 (02)
[26]   Microstructure-dependent Band Gaps for Elastic Wave Propagation in a Periodic Microbeam Structure [J].
Zhang, Gongye ;
Zheng, Chenyi ;
Qiu, Xinyuan ;
Mi, Changwen .
ACTA MECHANICA SOLIDA SINICA, 2021, 34 (04) :527-538
[27]   Microstructure-dependent Band Gaps for Elastic Wave Propagation in a Periodic Microbeam Structure [J].
Gongye Zhang ;
Chenyi Zheng ;
Xinyuan Qiu ;
Changwen Mi .
Acta Mechanica Solida Sinica, 2021, 34 :527-538
[28]   Comment on "Propagation of flexural wave in periodic beam on elastic foundations" [Phys. Lett. A 376 (2012) 626] [J].
Zhang, Yan ;
Han, Lin ;
Jiang, Lin-hua .
PHYSICS LETTERS A, 2013, 377 (06) :496-498
[29]   An exact Fourier series method for vibration analysis of elastically connected laminated composite double-beam system with elastic constraints [J].
Zhang, Ying ;
Shi, Dongyan .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2021, 28 (23) :2440-2457
[30]   ELASTIC WAVE PROPAGATION IN A PERIODIC COMPOSITE PLATE STRUCTURE: BAND GAPS INCORPORATING MICROSTRUCTURE, SURFACE ENERGY AND FOUNDATION EFFECTS [J].
Zhang, Gongye ;
Gao, Xin-Lin .
JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2019, 14 (02) :219-236