Flexural Vibration Band Gaps in a Parallel Double-Beam Periodic Structure With Local Resonators on Elastic Foundations

被引:0
|
作者
Zhu, Hongping [1 ]
Shen, Zehui [1 ]
Weng, Shun [1 ]
Zhang, Ying [1 ]
Luo, Hao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Civil & Hydraul Engn, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Parallel double-beam periodic structure; Band gap; Local resonators; Plane wave expansion method; Foundation stiffness; WAVE-PROPAGATION; BEHAVIOR;
D O I
10.1007/s42417-024-01603-w
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
PurposeTo further investigate the band gaps within the low frequency ranges for periodic double beams structure, a novel parallel double-beam periodic structure with periodically local resonators on elastic foundations is proposed and studied in this paper.MethodsThe band structure of the infinite double-beam system is obtained by the plane wave expansion method. Then the existence of band gaps is verified by analysing the transmission characteristic obtained through finite element analysis on the double-beam system. Furthermore, the band gap formation mechanism is studied in terms of the eigenmodes and transverse deformation pattern. Simple calculation formulas of the starting and ending frequencies of the band gaps are derived based on the eigenmodes. Parametric studies are also conducted to investigate the structural and foundation properties on the flexible vibration band gap characteristics.ResultsIt indicates that alterations in foundation stiffness directly affect the vibration mode of the structure, consequently leading to modifications in the band gap. Modifying the frequencies of band gaps by tuning the stiffness of the springs connected with the two beams is also feasible. The bounding frequencies f1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{1}$$\end{document} to f5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{5}$$\end{document} can be determined from the band structure. The lattice constant a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document} is insensitive to f1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{1}$$\end{document}f2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{2}$$\end{document} and f3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{3}$$\end{document}. The bounding frequencies f4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{4}$$\end{document} and f5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{5}$$\end{document} decrease as the lattice constant increases. The foundation stiffness kf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{f}$$\end{document} is equal to 80kN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$80 kN$$\end{document}, the band gap reaches its maximum of 93.8 Hz.ConclusionThe research provides a valuable reference for the vibration control of parallel double-beam periodic structures with local resonators, providing a foundation for future engineering applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Flexural vibration band gaps in axially loaded periodic beam structure
    Yu, Dian-Long
    Wen, Ji-Hong
    Chen, Sheng-Bing
    Fang, Jian-Yu
    Wen, Xi-Sen
    Zhendong yu Chongji/Journal of Vibration and Shock, 2010, 29 (03): : 85 - 88
  • [2] Tunable flexural wave band gaps in a prestressed elastic beam with periodic smart resonators
    Zhou, Weijian
    Wu, Bin
    Su, Yipin
    Liu, Dongying
    Chen, Weiqiu
    Bao, Ronghao
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2021, 28 (03) : 221 - 228
  • [3] Flexural vibration band gaps of the multiple local resonance elastic metamaterial plates with irregular resonators
    Li, Guo
    Dong, Yake
    Li, Genquan
    Liu, Xuyan
    Qu, Chongnian
    Zhang, Xingang
    MODERN PHYSICS LETTERS B, 2019, 33 (33):
  • [4] Flexural Wave Propagation in a Double-Beam System Interconnected by Local Resonators with Two Degrees of Freedom
    Ding, Lan
    Ding, Biao
    Wu, Qiao-Yun
    Zhu, Hong-Ping
    JOURNAL OF ENGINEERING MECHANICS, 2023, 149 (02)
  • [5] Propagation of flexural wave in periodic beam on elastic foundations
    Yu, Dianlong
    Wen, Jihong
    Shen, Huijie
    Xiao, Yong
    Wen, Xisen
    PHYSICS LETTERS A, 2012, 376 (04) : 626 - 630
  • [6] Double-beam metastructure with inertially amplified resonators for flexural wave attenuation
    Li, Hao
    Li, Yingli
    Liu, Xiang
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 97
  • [7] Flexural Vibration Band Gap Characteristic of Double Periodic Structure Beams
    Ning Ronghui
    Zhang Zhenhai
    2017 4TH INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS, MECHANICS AND STRUCTURAL ENGINEERING (4TH AMMSE 2017), 2017, 269
  • [8] Coupled vibration analysis of a double-beam structure with fluid and elastic connection inside
    Li, Zeng
    Zhang, Zhi-Yi
    Zhendong yu Chongji/Journal of Vibration and Shock, 2010, 29 (07): : 189 - 192
  • [9] Multi-flexural band gaps in an Euler-Bernoulli beam with lateral local resonators
    Wang, Ting
    Sheng, Mei-Ping
    Qin, Qing-Hua
    PHYSICS LETTERS A, 2016, 380 (04) : 525 - 529
  • [10] Flexural vibration band gaps for a phononic crystal beam with X-shaped local resonance metadamping structure
    Du Chun-Yang
    Yu Dian-Long
    Liu Jiang-Wei
    Wen Ji-Hong
    ACTA PHYSICA SINICA, 2017, 66 (14)