Bifurcation and nodal solutions of mean curvature equation with indefinite weight in Minkowski space
被引:0
|
作者:
Ma, Ruyun
论文数: 0引用数: 0
h-index: 0
机构:
Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R ChinaNorthwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
Ma, Ruyun
[1
,2
]
Yang, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R ChinaNorthwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
Yang, Wei
[1
]
Su, Xiaoxiao
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R ChinaNorthwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
Su, Xiaoxiao
[2
]
机构:
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
[2] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
Mean curvature equation;
Indefinite weight;
Rate of decay;
Nodal solutions;
Bifurcation;
POSITIVE RADIAL SOLUTIONS;
BORN-INFELD EQUATION;
GLOBAL STRUCTURE;
HYPERSURFACES;
OPERATOR;
D O I:
10.1007/s00033-025-02432-x
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We are concerned with the following mean curvature problem in Minkowski space {-div((del v)/(root 1-|del v|)2)=lambda m(|x|)f(v) in RN, v(|x|)-> 0 as |x|->+infinity, where N >= 3, lambda>0 is a parameter, m is an element of C-loc(alpha)(RN,R) for some alpha is an element of(0,1) is a weighted function and f is an element of C(R,R). Depending on the behavior of f near 0 and infinity, we investigate the existence and multiplicity of one-sign or sign-changing radial solutions to the problem. Moreover, we also obtain the rate of decay of solutions at infinity. The proof of the main results is based upon the bifurcation technique.
机构:
Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R ChinaDalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
Dai, Guowei
Zhang, Zhitao
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaDalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
机构:
Univ Torino, Dept Math Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Torino, Dept Math Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Boscaggin, Alberto
Feltrin, Guglielmo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Udine, Dept Math Comp Sci & Phys, Via Sci 206, I-33100 Udine, ItalyUniv Torino, Dept Math Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Feltrin, Guglielmo
Zanolin, Fabio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Udine, Dept Math Comp Sci & Phys, Via Sci 206, I-33100 Udine, ItalyUniv Torino, Dept Math Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy