A Transformation Preserving the Dimension and Minimum Weight of Cyclic Codes

被引:0
作者
Kim, Ryul [1 ]
Kim, Un Ye [1 ]
机构
[1] Kim Il Sung Univ, Fac Math, Pyongyang, North Korea
关键词
cyclic code; minimum weight; generator polynomial; finite field;
D O I
10.1134/S0032946024040021
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Cyclic codes are an important subclass of linear codes and have been extensively studied due to their wide applications. Many classes of optimal ternary and quinary cyclic codes were constructed in the recent literature. However, some cyclic codes of different generator polynomials may have the same optimality. In this paper, we investigate when the cyclic codes of the same length have the same optimality. We consider a transformation preserving the dimension and minimum weight between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document}-ary cyclic codes of the same length. In addition, three optimal quinary cyclic codes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C_{(1,e,t)}$\end{document} with parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[5<^>m-1,5<^>m-2m-2,4]$\end{document} are presented, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=(5<^>m-1)/4$\end{document}.
引用
收藏
页码:291 / 303
页数:13
相关论文
共 19 条
[11]   Four Classes of Optimal Quinary Cyclic Codes [J].
Liu, Yan ;
Cao, Xiwang .
IEEE COMMUNICATIONS LETTERS, 2020, 24 (07) :1387-1390
[12]   On some conjectures about optimal ternary cyclic codes [J].
Liu, Yan ;
Cao, Xiwang ;
Lu, Wei .
DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (02) :297-309
[13]  
Nian Li, 2015, 2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA), P62, DOI 10.1109/IWSDA.2015.7458415
[14]   Several classes of optimal ternary cyclic codes with minimal distance four [J].
Wang, Lisha ;
Wu, Gaofei .
FINITE FIELDS AND THEIR APPLICATIONS, 2016, 40 :126-137
[15]   Optimal p-ary cyclic codes with minimum distance four from monomials [J].
Xu, Guangkui ;
Cao, Xiwang ;
Xu, Shanding .
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2016, 8 (04) :541-554
[16]   A family of optimal ternary cyclic codes from the Niho-type exponent [J].
Yan, Haode ;
Zhou, Zhengchun ;
Du, Xiaoni .
FINITE FIELDS AND THEIR APPLICATIONS, 2018, 54 :101-112
[17]   Further results on optimal ternary cyclic codes [J].
Zha, Zhengbang ;
Hu, Lei ;
Liu, Yan ;
Cao, Xiwang .
FINITE FIELDS AND THEIR APPLICATIONS, 2021, 75
[18]   New classes of optimal ternary cyclic codes with minimum distance four [J].
Zha, Zhengbang ;
Hu, Lei .
FINITE FIELDS AND THEIR APPLICATIONS, 2020, 64 (64)
[19]   Two families of optimal ternary cyclic codes with minimal distance four [J].
Zhao, Hai ;
Luo, Rong ;
Sun, Tongjun .
FINITE FIELDS AND THEIR APPLICATIONS, 2022, 79