A Transformation Preserving the Dimension and Minimum Weight of Cyclic Codes

被引:0
作者
Kim, Ryul [1 ]
Kim, Un Ye [1 ]
机构
[1] Kim Il Sung Univ, Fac Math, Pyongyang, North Korea
关键词
cyclic code; minimum weight; generator polynomial; finite field;
D O I
10.1134/S0032946024040021
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Cyclic codes are an important subclass of linear codes and have been extensively studied due to their wide applications. Many classes of optimal ternary and quinary cyclic codes were constructed in the recent literature. However, some cyclic codes of different generator polynomials may have the same optimality. In this paper, we investigate when the cyclic codes of the same length have the same optimality. We consider a transformation preserving the dimension and minimum weight between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document}-ary cyclic codes of the same length. In addition, three optimal quinary cyclic codes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C_{(1,e,t)}$\end{document} with parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[5<^>m-1,5<^>m-2m-2,4]$\end{document} are presented, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=(5<^>m-1)/4$\end{document}.
引用
收藏
页码:291 / 303
页数:13
相关论文
共 19 条
[1]   Optimal Ternary Cyclic Codes From Monomials [J].
Ding, Cunsheng ;
Helleseth, Tor .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (09) :5898-5904
[2]   A class of optimal ternary cyclic codes and their duals [J].
Fan, Cuiling ;
Li, Nian ;
Zhou, Zhengchun .
FINITE FIELDS AND THEIR APPLICATIONS, 2016, 37 :193-202
[3]   Optimal Quinary Cyclic Codes with Minimum Distance Four [J].
Fan Jinmei ;
Zhang Yanhai .
CHINESE JOURNAL OF ELECTRONICS, 2020, 29 (03) :515-524
[4]   Generalized reciprocals, factors of Dickson polynomials and generalized cyclotomic polynomials over finite fields [J].
Fitzgerald, Robert W. ;
Yucas, Joseph L. .
FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (03) :492-515
[5]   On an open problem about a class of optimal ternary cyclic codes [J].
Han, Dongchun ;
Yan, Haode .
FINITE FIELDS AND THEIR APPLICATIONS, 2019, 59 :335-343
[6]  
Huffman WC., 2003, Fundamentals of Error-Correcting Codes
[7]   Optimal ternary cyclic codes with minimum distance four and five [J].
Li, Nian ;
Li, Chunlei ;
Helleseth, Tor ;
Ding, Cunsheng ;
Tang, Xiaohu .
FINITE FIELDS AND THEIR APPLICATIONS, 2014, 30 :100-120
[8]   A Class of Optimal Cyclic Codes With Two Zeros [J].
Liao, Dengchuan ;
Kai, Xiaoshan ;
Zhu, Shixin ;
Li, Ping .
IEEE COMMUNICATIONS LETTERS, 2019, 23 (08) :1293-1296
[9]  
Lidl R., 1997, Finite Fields, Encyclopedia of Mathematics and Its Applications
[10]   TWO CLASSES OF NEW OPTIMAL TERNARY CYCLIC CODES [J].
Liu, Yan ;
Cao, Xiwang ;
Lu, Wei .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2021, :979-993