Disorder-induced enhancement of lithium-ion transport in solid-state electrolytes

被引:9
作者
Chen, Zhimin [1 ]
Du, Tao [1 ,2 ]
Krishnan, N. M. Anoop [3 ]
Yue, Yuanzheng [1 ]
Smedskjaer, Morten M. [1 ]
机构
[1] Aalborg Univ, Dept Chem & Biosci, Aalborg, Denmark
[2] Hong Kong Polytech Univ, Dept Appl Phys, Kowloon, Hong Kong, Peoples R China
[3] Indian Inst Technol Delhi, Dept Civil Engn, New Delhi, India
基金
中国国家自然科学基金;
关键词
GLASS-CERAMICS; CONDUCTIVITY; CRYSTALLIZATION; RELAXATION; CONDUCTORS; DYNAMICS; SYSTEM; LI3PS4; NMR; SIMULATIONS;
D O I
10.1038/s41467-025-56322-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Enhancing the ion conduction in solid electrolytes is critically important for the development of high-performance all-solid-state lithium-ion batteries (LIBs). Lithium thiophosphates are among the most promising solid electrolytes, as they exhibit superionic conductivity at room temperature. However, the lack of comprehensive understanding of their ion conduction mechanism, especially the effect of structural disorder on ionic conductivity, is a long-standing problem that limits further innovations in all-solid-state LIBs. Here, we address this challenge by establishing and employing a deep learning potential to simulate Li3PS4 electrolyte systems with varying levels of disorder. The results show that disorder-driven diffusion dynamics significantly enhances the room-temperature conductivity. We further establish bridges between dynamical characteristics, local structural features, and atomic rearrangements by applying a machine learning-based structure fingerprint termed "softness". This metric allows the classification of the disorder-induced "soft" hopping lithium ions. Our findings offer insights into ion conduction mechanisms in complex disordered structures, thereby contributing to the development of superior solid-state electrolytes for LIBs.
引用
收藏
页数:14
相关论文
共 99 条
[1]  
[Anonymous], 2024, **DATA OBJECT**, DOI 10.5281/zenodo.14511656
[2]   A new universal force-field for the Li2S-P2S5 system [J].
Ariga, Shunsuke ;
Ohkubo, Takahiro ;
Urata, Shingo ;
Imamura, Yutaka ;
Taniguchi, Taketoshi .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (04) :2567-2581
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Unveiling the predictive power of static structure in glassy systems [J].
Bapst, V ;
Keck, T. ;
Grabska-Barwinska, A. ;
Donner, C. ;
Cubuk, E. D. ;
Schoenholz, S. S. ;
Obika, A. ;
Nelson, A. W. R. ;
Back, T. ;
Hassabis, D. ;
Kohli, P. .
NATURE PHYSICS, 2020, 16 (04) :448-+
[5]   Theoretical perspective on the glass transition and amorphous materials [J].
Berthier, Ludovic ;
Biroli, Giulio .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :587-645
[6]   Non-Arrhenius Ionic Conductivities in Glasses due to a Distribution of Activation Energies [J].
Bischoff, C. ;
Schuller, K. ;
Beckman, S. P. ;
Martin, S. W. .
PHYSICAL REVIEW LETTERS, 2012, 109 (07)
[7]   Ionic glasses: History and challenges [J].
Bunde, A ;
Funke, K ;
Ingram, MD .
SOLID STATE IONICS, 1998, 105 (1-4) :1-13
[8]   Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12" [J].
Buschmann, Henrik ;
Doelle, Janis ;
Berendts, Stefan ;
Kuhn, Alexander ;
Bottke, Patrick ;
Wilkening, Martin ;
Heitjans, Paul ;
Senyshyn, Anatoliy ;
Ehrenberg, Helmut ;
Lotnyk, Andriy ;
Duppel, Viola ;
Kienle, Lorenz ;
Janek, Juergen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (43) :19378-19392
[9]   Grain Boundary Complexion Transitions [J].
Cantwell, Patrick R. ;
Frolov, Timofey ;
Rupert, Timothy J. ;
Krause, Amanda R. ;
Marvel, Christopher J. ;
Rohrer, Gregory S. ;
Rickman, Jeffrey M. ;
Harmer, Martin P. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 50, 2020, 2020, 50 :465-492
[10]   Grain boundary complexions [J].
Cantwell, Patrick R. ;
Tang, Ming ;
Dillon, Shen J. ;
Luo, Jian ;
Rohrer, Gregory S. ;
Harmer, Martin P. .
ACTA MATERIALIA, 2014, 62 :1-48