共 21 条
- [1] Mahmud B.U., Sharmin A., Deep Insights of Deepfake Technology: A Review, DUJASE, 2021, 5, 1, pp. 13-23
- [2] Ivanov D.V., Moskvin D.A., Ovasapyan T.D., Approaches to detecting active network nodes in IPv6 address space, Autom. Control Comput. Sci, 51, pp. 902-906, (2017)
- [3] Ognev R.A., Zhukovskii E.V., Zegzhda D.P., Detection of malicious executable files based on clustering of activities, Autom. Control Comput. Sci, 55, pp. 1092-1098, (2021)
- [4] Khochare J., Joshi C., Yenarkar B., Suratkar S., Kazi F., A deep learning framework for audio deepfake detection, Arabian J. Sci. Eng, 47, pp. 3447-3458, (2021)
- [5] Guera D., Delp E.J., Deepfake video detection using recurrent neural networks, 15Th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1-6, (2018)
- [6] Zhong W., Tang D., Xu Z., Wang R., Duan N., Zhou M., Wang J., Yin J., Neural deepfake detection with factual structure of text, Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Webber, B., Cohn, T., He, Yu., and Liu, Ya., Eds, Association for Computational Linguistics, 2020, pp. 2461-2470
- [7] Masood M., Nawaz M., Malik K., Javed A., Irtaza A., Malik H., Deepfakes generation and detection: State-of-the-art, open challenges, countermeasures, and way forward, Appl. Intell, 53, pp. 3974-4026, (2023)
- [8] Poltavtseva M.A., Zegzhda P., Arai K., Kapoor S., Bhatia R., Heterogeneous semistructured objects analysis, IEEE J. Electron Devices Soc, 868, (2019)
- [9] Yi J., Wang C., Tao J., Zhang X., Zhang C., and Zhao, Ya, (2023)
- [10] Wijethunga R.L.M.A.P.C., Matheesha D.M.K., Noman A.A., De Silva K.H.V.T.A., Tissera M., Rupasinghe L., Deepfake audio detection: A deep learning based solution for group conversations, 2nd International Conference on Advancements in Computing (ICAC), Malabe, Sri Lanka, 2020, IEEE, 2020, 1, pp. 192-197, (2020)