Topology-inclusive aerodynamic shape optimisation using a cellular automata parameterisation

被引:0
|
作者
Wood, M. J. [1 ]
Rendall, T. C. S. [1 ]
Allen, C. B. [1 ]
Kedward, L. J. [1 ]
Taylor, N. J. [2 ]
Fincham, J. [2 ]
Leppard, N. E. [3 ]
机构
[1] Univ Bristol, Dept Aerosp Engn, Bristol BS8 1TR, England
[2] MBDA UK Ltd, Bristol BS34 7QS, England
[3] BAE Syst Operat Ltd, Bristol, England
基金
英国工程与自然科学研究理事会;
关键词
Optimisation; Parameterisation; Cellular automata; Aerodynamic topology optimisation;
D O I
10.1007/s00158-024-03916-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A novel geometry parameterisation method constructed from a volume-of-solid driven cellular automata is presented. The method is capable of describing complex geometry of arbitrary topology using a set of volume-of-solid parameters applied to a geometry control mesh. This is done by approximating the smooth geometry of minimum surface area subject to a set of localised constraints on contained volume defined by both the control mesh and volume-of-solid parameters. Localised control mesh refinement is possible through splitting of control mesh cells to provide additional degrees of freedom where necessary. The parameterisation is shown to reconstruct over 98% of a library of aerofoil geometries to within a standard wind tunnel-equivalent geometric tolerance, and to recover known analytical optima in supersonic flow. Using gradient-free optimisation methods, the parameterisation is then shown to construct aerodynamic geometries consisting of multiple objects to package a set of existing geometries. Finally, the parameterisation is used to construct an optimal supersonic multi-body geometry with less than half the drag of the equivalent volume optimal single body.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Discrete boundary smoothing using control node parameterisation for aerodynamic shape optimisation
    Naumann, D. S.
    Evans, B.
    Walton, S.
    Hassana, O.
    APPLIED MATHEMATICAL MODELLING, 2017, 48 : 113 - 133
  • [2] Cellular automata paradigm for topology optimisation
    Abdalla, Mostafa M.
    Setoodeh, Shahriar
    Gurdal, Zafer
    IUTAM SYMPOSIUM ON TOPOLOGICAL DESIGN OPTIMIZATION OF STRUCTURES, MACHINES AND MATERIALS: STATUS AND PERSPECTIVES, 2006, 137 : 169 - +
  • [3] Strain-based topology optimisation for crashworthiness using hybrid cellular automata
    Guo, Lianshui
    Tovar, Andres
    Penninger, Charles L.
    Renaud, John E.
    INTERNATIONAL JOURNAL OF CRASHWORTHINESS, 2011, 16 (03) : 239 - 252
  • [4] Aerodynamic shape optimisation using evolution strategies
    Olhofer, M
    Arima, T
    Sonoda, T
    Fischer, M
    Sendhoff, B
    OPTIMAIZATION IN INDUSTRY, 2002, : 83 - 94
  • [5] Optimization of structural topology using unstructured Cellular Automata
    Bochenek, B.
    Tajs-Zielinska, K.
    ADVANCES IN MECHANICS: THEORETICAL, COMPUTATIONAL AND INTERDISCIPLINARY ISSUES, 2016, : 87 - 91
  • [6] Aerodynamic Shape Optimisation Using Parametric CAD and Discrete Adjoint
    Agarwal, Dheeraj
    Marques, Simao
    Robinson, Trevor T. T.
    AEROSPACE, 2022, 9 (12)
  • [7] Topometry optimisation for crashworthiness design using hybrid cellular automata
    Mozumder, Chandan
    Renaud, John E.
    Tovar, Andres
    INTERNATIONAL JOURNAL OF VEHICLE DESIGN, 2012, 60 (1-2) : 100 - 120
  • [8] Aerodynamic shape optimisation of hovering rotors using compressible CFD
    Allen, C. B.
    Rendall, T. C. S.
    AERONAUTICAL JOURNAL, 2011, 115 (1170): : 513 - 519
  • [9] Structural optimisation using a hybrid cellular automata (HCA) algorithm
    Chia, C. M.
    Rongong, J. A.
    Worden, K.
    MODERN PRACTICE IN STRESS AND VIBRATION ANALYSIS VI, PROCEEDINGS, 2006, 5-6 : 93 - +
  • [10] Aerodynamic topology optimisation using an implicit representation and a multiobjective genetic algorithm
    Hutabarat, Windo
    Parks, Geoffrey T.
    Jarrett, Jerome P.
    Dawes, William N.
    Clarkson, P. John
    ARTIFICIAL EVOLUTION, 2008, 4926 : 148 - 159