2.5-dimensional covalent organic frameworks

被引:0
|
作者
Kitano, Tomoki [1 ,2 ]
Goto, Syunto [1 ,2 ]
Wang, Xiaohan [1 ,2 ]
Kamihara, Takayuki [3 ]
Sei, Yoshihisa [3 ]
Kondo, Yukihito [4 ]
Sannomiya, Takumi [4 ]
Uekusa, Hidehiro [5 ]
Murakami, Yoichi [1 ,2 ,6 ]
机构
[1] Inst Sci Tokyo, Inst Integrated Res, Lab Zero Carbon Energy, Tokyo, Japan
[2] Inst Sci Tokyo, Dept Mech Engn, Tokyo, Japan
[3] Inst Sci Tokyo, Open Facil Ctr, Facil Stn Div, Yokohama, Japan
[4] Inst Sci Tokyo, Dept Mat Sci & Engn, Yokohama, Japan
[5] Inst Sci Tokyo, Dept Chem, Tokyo, Japan
[6] Inst Sci Tokyo, Dept Transdisciplinary Sci & Engn, Tokyo, Japan
基金
日本学术振兴会;
关键词
POROUS MATERIALS; CO2; CAPTURE; CRYSTALLINE; ADSORPTION; ISOMERISM; DESIGN; IMINE;
D O I
10.1038/s41467-024-55729-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Covalently bonded crystalline substances with micropores have broad applications. Covalent organic frameworks (COFs) are representative of such substances. They have so far been classified into two-dimensional (2D) and three-dimensional (3D) COFs. 2D-COFs have planar shapes useful for broad purposes, but obtaining good crystals of 2D-COFs with sizes larger than 10 mu m is significantly challenging, whereas yielding 3D-COFs with high crystallinity and larger sizes is easier. Here, we show COFs with 2.5-dimensional (2.5D) skeletons, which are microscopically constructed with 3D bonds but have macroscopically 2D planar shapes. The 2.5D-COFs shown herein achieve large single-crystal sizes above 0.1 mm and ultrahigh-density primary amines regularly allocated on and pointing perpendicular to the covalently-bonded network plane. Owing to the latter nature, the COFs are promising as CO2 adsorbents that can simultaneously achieve high CO2/N2 selectivity and low heat of adsorption, which are usually in a mutually exclusive relationship. 2.5D-COFs are expected to broaden the frontier and application of covalently bonded microporous crystalline systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Design and applications of three dimensional covalent organic frameworks
    Guan, Xinyu
    Chen, Fengqian
    Fang, Qianrong
    Qiu, Shilun
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (05) : 1357 - 1384
  • [2] Multivariate Flexible Metal-Organic Frameworks and Covalent Organic Frameworks
    Sobczak, Szymon K.
    Drweska, Joanna
    Gromelska, Wiktoria
    Roztocki, Kornel
    Janiak, Agnieszka M.
    SMALL, 2024, 20 (51)
  • [3] Covalent organic frameworks: Polymer chemistry and functional design
    Geng, Keyu
    Arumugam, Vasanthakumar
    Xu, Huanjun
    Gao, Yanan
    Jiang, Donglin
    PROGRESS IN POLYMER SCIENCE, 2020, 108
  • [4] Metal-Covalent Organic Frameworks (MCOFs): A Bridge Between Metal-Organic Frameworks and Covalent Organic Frameworks
    Dong, Jinqiao
    Han, Xing
    Liu, Yan
    Li, Haiyang
    Cui, Yong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (33) : 13722 - 13733
  • [5] Metallosalen covalent organic frameworks for heterogeneous catalysis
    Zhou, Wei
    Deng, Wei-Qiao
    Lu, Xing
    INTERDISCIPLINARY MATERIALS, 2024, 3 (01): : 87 - 112
  • [6] Dynamic two-dimensional covalent organic frameworks
    Auras, Florian
    Ascherl, Laura
    Bon, Volodymyr
    Vornholt, Simon M.
    Krause, Simon
    Doeblinger, Markus
    Bessinger, Derya
    Reuter, Stephan
    Chapman, Karena W.
    Kaskel, Stefan
    Friend, Richard H.
    Bein, Thomas
    NATURE CHEMISTRY, 2024, 16 (08) : 1373 - 1380
  • [7] Isostructural Three-Dimensional Covalent Organic Frameworks
    Gao, Chao
    Li, Jian
    Yin, Sheng
    Lin, Guiqing
    Ma, Tianqiong
    Meng, Yi
    Sun, Junliang
    Wang, Cheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (29) : 9770 - 9775
  • [8] Covalent Metal-Organic Frameworks: Fusion of Covalent Organic Frameworks and Metal-Organic Frameworks
    Wei, Rong-Jia
    Luo, Xiao
    Ning, Guo-Hong
    Li, Dan
    ACCOUNTS OF CHEMICAL RESEARCH, 2025, 58 (05) : 746 - 761
  • [9] Computational screening of covalent organic frameworks for the capture of radioactive iodine and methyl iodide
    Lan, Youshi
    Tong, Minman
    Yang, Qingyuan
    Zhong, Chongli
    CRYSTENGCOMM, 2017, 19 (33): : 4920 - 4926
  • [10] Mechanism for Topology Selection of Isomeric Two-Dimensional Covalent Organic Frameworks
    Yu, Xiang-Kun
    Zhao, Huan-Yu
    Li, Jun-Peng
    Li, Xing-Ji
    Yang, Jian-Qun
    Zhu, You-Liang
    Lu, Zhongyuan
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (30) : 7087 - 7093