27.09%-efficiency silicon heterojunction back contact solar cell and going beyond

被引:7
作者
Wang, Genshun [1 ,2 ,3 ,4 ]
Su, Qiao [1 ,4 ]
Tang, Hanbo [1 ,4 ]
Wu, Hua [2 ,3 ]
Lin, Hao [1 ,4 ]
Han, Can [1 ,4 ]
Wang, Tingting [2 ,3 ]
Xue, Chaowei [2 ,3 ]
Lu, Junxiong [2 ,3 ]
Fang, Liang [2 ,3 ]
Li, Zhenguo [2 ,3 ]
Xu, Xixiang [2 ,3 ]
Gao, Pingqi [1 ,4 ]
机构
[1] Sun Yat Sen Univ, Sch Mat, Shenzhen Campus,66 Gongchang Rd, Shenzhen 518107, Guangdong, Peoples R China
[2] LONGi Cent R&D Inst, Xian 712000, Peoples R China
[3] LONGi Green Energy Technol Co Ltd, Xian 710016, Peoples R China
[4] Sun Yat Sen Univ, Inst Solar Energy Syst, State Key Lab Optoelect Mat & Technol, Guangdong Engn Technol Res Ctr Sustainable Photovo, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
EFFICIENCY; QUANTIFICATION; RECOMBINATION; RESISTANCE; MODEL;
D O I
10.1038/s41467-024-53275-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Crystalline-silicon heterojunction back contact solar cells represent the forefront of photovoltaic technology, but encounter significant challenges in managing charge carrier recombination and transport to achieve high efficiency. In this study, we produced highly efficient heterojunction back contact solar cells with a certified efficiency of 27.09% using a laser patterning technique. Our findings indicate that recombination losses primarily arise from the hole-selective contact region and polarity boundaries. We propose solutions to these issues and establish a clear relationship between contact resistivity, series resistance, and the design of the rear-side pattern. Furthermore, we demonstrate that the wafer edge becomes the main channel for current density loss caused by carrier recombination once electrical shading around the electron-selective contact region is mitigated. With the advanced nanocrystalline passivating contact, wafer edge passivation technologies and meticulous optimization of front anti-reflection coating and rear reflector, achieving efficiencies as high as 27.7% is feasible. The management of charge carrier recombination and transport in heterojunction back contact solar cells poses significant challenges in achieving a high efficiency. Here, authors analyze various loss mechanisms of devices fabricated by laser patterning, and achieve a certified efficiency of 27.09%.
引用
收藏
页数:12
相关论文
共 61 条
  • [51] Simple processing of back-contacted silicon heterojunction solar cells using selective-area crystalline growth
    Tomasi, Andrea
    Paviet-Salomon, Bertrand
    Jeangros, Quentin
    Haschke, Jan
    Christmann, Gabriel
    Barraud, Loris
    Descoeudres, Antoine
    Seif, Johannes Peter
    Nicolay, Sylvain
    Despeisse, Matthieu
    De Wolf, Stefaan
    Ballif, Christophe
    [J]. NATURE ENERGY, 2017, 2 (05):
  • [52] Policy and Management of Carbon Peaking and Carbon Neutrality: A Literature Review
    Wei, Yi-Ming
    Chen, Kaiyuan
    Kang, Jia-Ning
    Chen, Weiming
    Zhang, Xiaoye
    Wang, Xiang-Yu
    [J]. ENGINEERING, 2022, 14 : 52 - 63
  • [53] Passivating contacts for silicon solar cells based on boron-diffused recrystallized amorphous silicon and thin dielectric interlayers
    Yan, Di
    Cuevas, Andres
    Wan, Yimao
    Bullock, James
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 152 : 73 - 79
  • [54] Phosphorus-diffused polysilicon contacts for solar cells
    Yan, Di
    Cuevas, Andres
    Bullock, James
    Wan, Yimao
    Samundsett, Christian
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 142 : 75 - 82
  • [55] Stable Organic Passivated Carbon Nanotube-Silicon Solar Cells with an Efficiency of 22%
    Yan, Jun
    Zhang, Cuili
    Li, Han
    Yang, Xueliang
    Wan, Lu
    Li, Feng
    Qiu, Kaifu
    Guo, Jianxin
    Duan, Weiyuan
    Lambertz, Andreas
    Lu, Wanbing
    Song, Dengyuan
    Ding, Kaining
    Flavel, Benjamin S.
    Chen, Jianhui
    [J]. ADVANCED SCIENCE, 2021, 8 (20)
  • [56] The role of front-surface charges in interdigitated back contact silicon heterojunction solar cells
    Yang, Zhenhai
    Lin, Hao
    Chee, Kuan W. A.
    Gao, Pingqi
    Ye, Jichun
    [J]. NANO ENERGY, 2019, 61 : 221 - 227
  • [57] Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology
    Yoshikawa, Kunta
    Yoshida, Wataru
    Irie, Toru
    Kawasaki, Hayato
    Konishi, Katsunori
    Ishibashi, Hirotaka
    Asatani, Tsuyoshi
    Adachi, Daisuke
    Kanematsu, Masanori
    Uzu, Hisashi
    Yamamoto, Kenji
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 173 : 37 - 42
  • [58] Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%
    Yoshikawa, Kunta
    Kawasaki, Hayato
    Yoshida, Wataru
    Irie, Toru
    Konishi, Katsunori
    Nakano, Kunihiro
    Uto, Toshihiko
    Adachi, Daisuke
    Kanematsu, Masanori
    Uzu, Hisashi
    Yamamoto, Kenji
    [J]. NATURE ENERGY, 2017, 2 (05):
  • [59] Silicon solar cell with undoped tin oxide transparent electrode
    Yu, Cao
    Zou, Qiaojiao
    Wang, Qi
    Zhao, Yu
    Ran, Xiaochao
    Dong, Gangqiang
    Peng, Chen-Wei
    Allen, Vince
    Cao, Xinming
    Zhou, Jian
    Zhao, Ying
    Zhang, Xiaodan
    [J]. NATURE ENERGY, 2023, 8 (10) : 1119 - 1125
  • [60] Role of CO2 geological storage in China?s pledge to carbon peak by 2030 and carbon neutrality by 2060
    Zhong, Zhiqi
    Chen, Yongqiang
    Fu, Meiyan
    Li, Minzhen
    Yang, Kaishuo
    Zeng, Lingping
    Liang, Jing
    Ma, Rupeng
    Xie, Quan
    [J]. ENERGY, 2023, 272