27.09%-efficiency silicon heterojunction back contact solar cell and going beyond

被引:7
作者
Wang, Genshun [1 ,2 ,3 ,4 ]
Su, Qiao [1 ,4 ]
Tang, Hanbo [1 ,4 ]
Wu, Hua [2 ,3 ]
Lin, Hao [1 ,4 ]
Han, Can [1 ,4 ]
Wang, Tingting [2 ,3 ]
Xue, Chaowei [2 ,3 ]
Lu, Junxiong [2 ,3 ]
Fang, Liang [2 ,3 ]
Li, Zhenguo [2 ,3 ]
Xu, Xixiang [2 ,3 ]
Gao, Pingqi [1 ,4 ]
机构
[1] Sun Yat Sen Univ, Sch Mat, Shenzhen Campus,66 Gongchang Rd, Shenzhen 518107, Guangdong, Peoples R China
[2] LONGi Cent R&D Inst, Xian 712000, Peoples R China
[3] LONGi Green Energy Technol Co Ltd, Xian 710016, Peoples R China
[4] Sun Yat Sen Univ, Inst Solar Energy Syst, State Key Lab Optoelect Mat & Technol, Guangdong Engn Technol Res Ctr Sustainable Photovo, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
EFFICIENCY; QUANTIFICATION; RECOMBINATION; RESISTANCE; MODEL;
D O I
10.1038/s41467-024-53275-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Crystalline-silicon heterojunction back contact solar cells represent the forefront of photovoltaic technology, but encounter significant challenges in managing charge carrier recombination and transport to achieve high efficiency. In this study, we produced highly efficient heterojunction back contact solar cells with a certified efficiency of 27.09% using a laser patterning technique. Our findings indicate that recombination losses primarily arise from the hole-selective contact region and polarity boundaries. We propose solutions to these issues and establish a clear relationship between contact resistivity, series resistance, and the design of the rear-side pattern. Furthermore, we demonstrate that the wafer edge becomes the main channel for current density loss caused by carrier recombination once electrical shading around the electron-selective contact region is mitigated. With the advanced nanocrystalline passivating contact, wafer edge passivation technologies and meticulous optimization of front anti-reflection coating and rear reflector, achieving efficiencies as high as 27.7% is feasible. The management of charge carrier recombination and transport in heterojunction back contact solar cells poses significant challenges in achieving a high efficiency. Here, authors analyze various loss mechanisms of devices fabricated by laser patterning, and achieve a certified efficiency of 27.09%.
引用
收藏
页数:12
相关论文
共 61 条
  • [41] n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation
    Richter, Armin
    Benick, Jan
    Feldmann, Frank
    Fell, Andreas
    Hermle, Martin
    Glunz, Stefan W.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 173 : 96 - 105
  • [42] 25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers
    Ru, Xiaoning
    Qu, Minghao
    Wang, Jianqiang
    Ruan, Tianyu
    Yang, Miao
    Peng, Fuguo
    Long, Wei
    Zheng, Kun
    Yan, Hui
    Xu, Xixiang
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 215
  • [43] Surface passivation of crystalline silicon solar cells: Present and future
    Schmidt, Jan
    Peibst, Robby
    Brendel, Rolf
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 187 : 39 - 54
  • [44] Recombination and Optical Properties of Wet Chemically Polished Thermal Oxide Passivated Si Surfaces
    Schwab, Christoph
    Wolf, Andreas
    Graf, Martin
    Woehrle, Nico
    Kuehnhold, Saskia
    Greulich, Johannes
    Kaestner, Gero
    Biro, Daniel
    Preu, Ralf
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2013, 3 (02): : 613 - 620
  • [45] DETAILED BALANCE LIMIT OF EFFICIENCY OF P-N JUNCTION SOLAR CELLS
    SHOCKLEY, W
    QUEISSER, HJ
    [J]. JOURNAL OF APPLIED PHYSICS, 1961, 32 (03) : 510 - &
  • [46] Experimental and simulated analysis of front versus all-back-contact silicon heterojunction solar cells: effect of interface and doped a-Si:H layer defects
    Shu, Zhan
    Das, Ujjwal
    Allen, John
    Birkmire, Robert
    Hegedus, Steven
    [J]. PROGRESS IN PHOTOVOLTAICS, 2015, 23 (01): : 78 - 93
  • [47] Vacancies and voids in hydrogenated amorphous silicon
    Smets, AHM
    Kessels, WMM
    van de Sanden, MCM
    [J]. APPLIED PHYSICS LETTERS, 2003, 82 (10) : 1547 - 1549
  • [48] Quantification of pn-Junction Recombination in Interdigitated Back-Contact Crystalline Silicon Solar Cells
    Spinelli, Pierpaolo
    van de Loo, Bas W. H.
    Vlooswijk, Ard H. G.
    Kessels, W. M. M.
    Cesar, Ilkay
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2017, 7 (05): : 1176 - 1183
  • [49] Theoretical limiting-efficiency assessment on advanced crystalline silicon solar cells with Auger ideality factor and wafer thickness modifications
    Su, Qiao
    Lin, Hao
    Wang, Genshun
    Tang, Hanbo
    Xue, Chaowei
    Li, Zhenguo
    Xu, Xixiang
    Gao, Pingqi
    [J]. PROGRESS IN PHOTOVOLTAICS, 2024, 32 (09): : 587 - 598
  • [50] Printing technologies for silicon solar cell metallization: A comprehensive review
    Tepner, Sebastian
    Lorenz, Andreas
    [J]. PROGRESS IN PHOTOVOLTAICS, 2023, 31 (06): : 557 - 590