27.09%-efficiency silicon heterojunction back contact solar cell and going beyond

被引:7
作者
Wang, Genshun [1 ,2 ,3 ,4 ]
Su, Qiao [1 ,4 ]
Tang, Hanbo [1 ,4 ]
Wu, Hua [2 ,3 ]
Lin, Hao [1 ,4 ]
Han, Can [1 ,4 ]
Wang, Tingting [2 ,3 ]
Xue, Chaowei [2 ,3 ]
Lu, Junxiong [2 ,3 ]
Fang, Liang [2 ,3 ]
Li, Zhenguo [2 ,3 ]
Xu, Xixiang [2 ,3 ]
Gao, Pingqi [1 ,4 ]
机构
[1] Sun Yat Sen Univ, Sch Mat, Shenzhen Campus,66 Gongchang Rd, Shenzhen 518107, Guangdong, Peoples R China
[2] LONGi Cent R&D Inst, Xian 712000, Peoples R China
[3] LONGi Green Energy Technol Co Ltd, Xian 710016, Peoples R China
[4] Sun Yat Sen Univ, Inst Solar Energy Syst, State Key Lab Optoelect Mat & Technol, Guangdong Engn Technol Res Ctr Sustainable Photovo, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
EFFICIENCY; QUANTIFICATION; RECOMBINATION; RESISTANCE; MODEL;
D O I
10.1038/s41467-024-53275-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Crystalline-silicon heterojunction back contact solar cells represent the forefront of photovoltaic technology, but encounter significant challenges in managing charge carrier recombination and transport to achieve high efficiency. In this study, we produced highly efficient heterojunction back contact solar cells with a certified efficiency of 27.09% using a laser patterning technique. Our findings indicate that recombination losses primarily arise from the hole-selective contact region and polarity boundaries. We propose solutions to these issues and establish a clear relationship between contact resistivity, series resistance, and the design of the rear-side pattern. Furthermore, we demonstrate that the wafer edge becomes the main channel for current density loss caused by carrier recombination once electrical shading around the electron-selective contact region is mitigated. With the advanced nanocrystalline passivating contact, wafer edge passivation technologies and meticulous optimization of front anti-reflection coating and rear reflector, achieving efficiencies as high as 27.7% is feasible. The management of charge carrier recombination and transport in heterojunction back contact solar cells poses significant challenges in achieving a high efficiency. Here, authors analyze various loss mechanisms of devices fabricated by laser patterning, and achieve a certified efficiency of 27.09%.
引用
收藏
页数:12
相关论文
共 61 条
  • [1] Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency
    Adachi, Daisuke
    Hernandez, Jose Luis
    Yamamoto, Kenji
    [J]. APPLIED PHYSICS LETTERS, 2015, 107 (23)
  • [2] Passivating contacts for crystalline silicon solar cells
    Allen, Thomas G.
    Bullock, James
    Yang, Xinbo
    Javey, Ali
    De Wolf, Stefaan
    [J]. NATURE ENERGY, 2019, 4 (11) : 914 - 928
  • [3] Integration of thin n-type nc-Si:H layers in the window-multilayer stack of heterojunction solar cells
    Antognini, Luca
    Sthioul, Corentin
    Dreon, Julie
    Paratte, Vincent
    Tuerkay, Deniz
    Senaud, Laurie-Lou
    Ballif, Christophe
    Boccard, Mathieu
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 248
  • [4] Bai Y., 2023, Small Struct., V4, P432
  • [5] BRODSKY MH, 1977, PHYS REV B, V16, P3556, DOI 10.1103/PhysRevB.16.3556
  • [6] Low-breakdown-voltage solar cells for shading-tolerant photovoltaic modules
    Calcabrini, Andres
    Moya, Paul Procel
    Huang, Ben
    Kambhampati, Viswambher
    Manganiello, Patrizio
    Muttillo, Mirco
    Zeman, Miro
    Isabella, Olindo
    [J]. CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (12):
  • [7] Cuevas A., 2015, Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, P1, DOI [DOI 10.1109/PVSC.2015.7356379, 10.1109/PVSC.2015.7356379]
  • [8] Influence of cell edges on the performance of silicon heterojunction solar cells
    Giglia, V
    Varache, R.
    Veirman, J.
    Fourmond, E.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 238
  • [9] Silicon-based passivating contacts: The TOPCon route
    Glunz, Stefan W.
    Steinhauser, Bernd
    Polzin, Jana-Isabelle
    Luderer, Christoph
    Gruebel, Benjamin
    Niewelt, Tim
    Okasha, Asmaa M. O. M.
    Bories, Mathias
    Nagel, Henning
    Krieg, Katrin
    Feldmann, Frank
    Richter, Armin
    Bivour, Martin
    Hermle, Martin
    [J]. PROGRESS IN PHOTOVOLTAICS, 2023, 31 (04): : 341 - 359
  • [10] Green MA, 2016, PROG PHOTOVOLTAICS, V24, P3, DOI [10.1002/pip.3371, 10.1002/pip.2728]