Nonlocal problems with Neumann and Robin boundary condition in fractional Musielak-Sobolev spaces

被引:1
作者
Srati, M. [1 ]
Azroul, E. [2 ]
Benkirane, A. [2 ]
机构
[1] Univ Mohammed First, High Sch Educ & Format ESEF, Oujda, Morocco
[2] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar Mahraz, Lab Math Anal & Applicat, Fes, Morocco
关键词
Fractional Musielak-Sobolev spaces; Nonlocal problems; Neumann boundary condition; Robin boundary condition; Direct variational method; REGULARITY CRITERION; EQUATIONS;
D O I
10.1007/s12215-024-01117-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we develop some properties of the ax,y(.)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{x,y}(.)$$\end{document}-Neumann derivative for the fractional ax,y(.)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{x,y}(.)$$\end{document}-Laplacian operator. Therefore we prove the basic proprieties of the correspondent function spaces. In the second part of this paper, by means of Ekeland's variational principal and direct variational approach, we prove the existence of weak solutions for a nonlocal problem with nonhomogeneous Neumann and Robin boundary condition.
引用
收藏
页数:23
相关论文
共 35 条
[1]  
Adams R.A., 2003, Pure and Applied Mathematics, V140
[2]  
[Anonymous], 2004, Mediterr. J. Math.
[3]   On a class of nonlocal problems in new fractional Musielak-Sobolev spaces [J].
Azroul, E. ;
Benkirane, A. ;
Shimi, M. ;
Srati, M. .
APPLICABLE ANALYSIS, 2022, 101 (06) :1933-1952
[4]  
Azroul E., 2019, APPL ANAL, DOI [10.1080/00036811.2019.1673373, DOI 10.1080/00036811.2019.1603372]
[5]  
Azroul E., 2018, Moroc. J. Pure Appl. Anal., V4, P46
[6]  
Azroul E., 2021, J. Appl. Anal, V100, P383, DOI [10.1080/00036811.2019.1603372, DOI 10.1080/00036811.2019.1603372]
[7]   Embedding and extension results in fractional Musielak-Sobolev spaces [J].
Azroul, Elhoussine ;
Benkirane, Abdelmoujib ;
Shimi, Mohammed ;
Srati, Mohammed .
APPLICABLE ANALYSIS, 2023, 102 (01) :195-219
[8]   MOUNTAIN PASS TYPE SOLUTIONS FOR A NONLACAL FRACTIONAL a(.)-KIRCHHOFF TYPE PROBLEMS [J].
Azroul, Elhoussine ;
Benkirane, Abdelmoujib ;
Srati, Mohammed .
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021,
[9]  
Azroul E, 2021, ELECTRON J DIFFER EQ
[10]   Eigenvalue problem associated with nonhomogeneous integro-differential operators Eigenvalue problem [J].
Azroul, Elhoussine ;
Benkirane, Abdelmoujib ;
Srati, Mohammed .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2021, 7 (01) :47-64