Stretchable, self-healing, adhesive and anti-freezing ionic conductive cellulose-based hydrogels for flexible supercapacitors and sensors

被引:2
|
作者
Chen, Lizhi [1 ]
Yin, Hongyan [1 ]
Liu, Fangfei [1 ]
Abdiryim, Tursun [1 ]
Xu, Feng [1 ]
You, Jiangan [1 ]
Chen, Jiaying [1 ]
Jing, Xinyu [1 ]
Li, Yancai [1 ]
Su, Mengyao [1 ]
Liu, Xiong [1 ]
机构
[1] Xinjiang Univ, Coll Chem, State Key Lab Chem & Utilizat Carbon Based Energy, Urumqi 830017, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Conductive hydrogel; Self-healing; Anti-freezing; Supercapacitor; Strain sensor;
D O I
10.1007/s10570-024-06226-8
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Conductive hydrogels have great application potential in flexible electronic devices. Nevertheless, it is a huge challenge to fabricate multifunctional conductive hydrogels simultaneously integrated with high conductivity, self-healing performance, adhesiveness and anti-freezing ability. Herein, multifunctional ionic conductive hydrogels composed of sodium carboxymethyl cellulose, polyacrylic acid and NaCl are designed via a facile one-pot polymerization method based on the tannic acid-ferric ions autocatalytic system. The multifunctional hydrogel shows high stretchability (1170%, 104 kPa), an elastic modulus of 0.088 MPa, a toughness of 0.680 MJ m-3 and adhesiveness (wood: 22.95 +/- 2.59 kPa). Metal coordination and H-bonding endow the hydrogel with good self-healing (98.3% for strain recovery), and NaCl is responsible for high ionic conductivity (2.818 S m-1) and anti-freezing performance (conductivity of 1.738 S m-1 at - 25 degrees C). The multifunctional hydrogel is assembled into a flexible supercapacitor with a high specific capacitance of 144.94 F g-1, long-term stability (15,000 cycles) and low-temperature tolerance (- 27.5 degrees C). A flexible strain sensor based on the multifunctional hydrogel has a gauge factor of 6.77 (750-1050%) and is applied for monitoring human motions. The multifunctional hydrogel also can serve as a flexible bioelectrode to detect electromyographic and electrocardiographic signals, even working at low temperature (- 7 degrees C).
引用
收藏
页码:11015 / 11033
页数:19
相关论文
共 50 条
  • [1] Stretchable, transparent, self-adhesive, anti-freezing and ionic conductive nanocomposite hydrogels for flexible strain sensors
    Zhang, Yi
    Liu, Han
    Wang, Ping
    Yu, Yuanyuan
    Zhou, Man
    Xu, Bo
    Cui, Li
    Wang, Qiang
    EUROPEAN POLYMER JOURNAL, 2023, 186
  • [2] Self-adhesive, ionic-conductive, mechanically robust cellulose-based organogels with anti-freezing and rapid recovery properties for flexible sensors
    Zhou, You
    Li, Renai
    Wan, Linguang
    Zhang, Fengshan
    Liu, Zhulan
    Cao, Yunfeng
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 240
  • [3] Wide-humidity, anti-freezing and stretchable multifunctional conductive carboxymethyl cellulose-based hydrogels for flexible wearable strain sensors and arrays
    Cui, Liangliang
    Wang, Wei
    Zheng, Jian
    Hu, Chunyan
    Zhu, Zhijia
    Liu, Baojiang
    CARBOHYDRATE POLYMERS, 2024, 342
  • [4] Stretchable, self-adhesive, conductive, anti-freezing sodium polyacrylate-based composite hydrogels for wearable flexible strain sensors
    Liu, Ruixue
    Chen, Jichao
    Luo, Zongqing
    Zhang, Xiaojing
    Chen, Weihang
    Niu, Zhibin
    REACTIVE & FUNCTIONAL POLYMERS, 2022, 172
  • [5] Construction and characterization of highly stretchable ionic conductive hydrogels for flexible sensors with good anti-freezing performance
    Zhang, Chenyan
    Wang, Jikui
    Li, Shuo
    Zou, Xinquan
    Yin, Huixian
    Huang, Yicheng
    Dong, Feilong
    Li, Peiyuan
    Song, Yaoting
    EUROPEAN POLYMER JOURNAL, 2023, 186
  • [6] Conductive, self-healing and adhesive cellulose nanofibers-based hydrogels as wearable strain sensors and supercapacitors
    Zhuang, Jie
    Zhang, Xuebing
    Jin, Wanhui
    Mei, Fan
    Xu, Yuqi
    He, Li
    Tan, Sirui
    Cai, Guangming
    Cheng, Deshan
    Wang, Xin
    INDUSTRIAL CROPS AND PRODUCTS, 2025, 225
  • [7] Ultra-Stretchable and Self-Healing Anti-Freezing Strain Sensors Based on Hydrophobic Associated Polyacrylic Acid Hydrogels
    Yin, Shuya
    Su, Gehong
    Chen, Jiajun
    Peng, Xiaoyan
    Zhou, Tao
    MATERIALS, 2021, 14 (20)
  • [8] Self-healing, self-adhesive, stretchable and flexible conductive hydrogels for high-performance strain sensors
    Li, Ruirui
    Ren, Jie
    Li, Meng
    Zhang, Minmin
    Li, Yan
    Yang, Wu
    SOFT MATTER, 2023, 19 (30) : 5723 - 5736
  • [9] Ultrastretchable, Adhesive, Anti-freezing, Conductive, and Self-Healing Hydrogel for Wearable Devices
    Zhao, Xiaoli
    Wang, Huanxia
    Luo, Jinni
    Ren, Guanglei
    Wang, Jinfei
    Chen, Yuan
    Jia, Pengxiang
    ACS APPLIED POLYMER MATERIALS, 2022, 4 (03): : 1784 - 1793
  • [10] Humic acid-based anti-freezing and self-healing hydrogel flexible sensors with functional cellulose nanocrystals
    Liu, Pengxiao
    Chen, Xiangyu
    Wang, Chenming
    Cui, Xinyue
    Chen, Hou
    Bai, Liangjiu
    Wang, Wenxiang
    Wei, Kai
    Yang, Huawei
    Yang, Lixia
    CHEMICAL ENGINEERING JOURNAL, 2025, 506