Effects of the insecticide chlorpyrifos on Amazonian freshwater invertebrates: A mesocosm experiment

被引:0
作者
Cabrera, Marcela [1 ,2 ,3 ]
Capparelli, Mariana V. [4 ]
Velarde, Elizabeth [5 ]
Portilla, Karen [5 ]
Caiza, Ricardo [6 ]
Mogollon, Noroska Gabriela [5 ,6 ]
Rico, Andreu [1 ]
机构
[1] Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/Catedrático José Beltrán 2, Valencia, Paterna
[2] Grupo de Investigación de Recursos Hídricos y Acuáticos, Universidad Regional Amazónica Ikiam, Tena
[3] Facultad de Ciencias de la Vida, Universidad Regional Amazónica Ikiam, Tena
[4] Instituto de Ciencias del Mar y Limnología-Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen
[5] Grupo de Investigaciones Antárticas (GIAN), Universidad Técnica del Norte (UTN), Av, 17 de Julio 5-21 y Gral. José María Córdova, Ibarra
[6] Biomolecules Discovery Group, Universidad Regional Amazónica, Tena
关键词
Amazon; Freshwater invertebrates; Mesocosms; Organophosphates; Tropical ecotoxicology;
D O I
10.1016/j.scitotenv.2024.177831
中图分类号
学科分类号
摘要
Chlorpyrifos is one of the most widely used insecticides globally, yet its toxicity for tropical aquatic ecosystems in Latin America has not been thoroughly evaluated. In this study, we conducted a 70-day mesocosm experiment to assess the effects of chlorpyrifos on zooplankton and macroinvertebrate communities representative of the Ecuadorian Amazon. Mesocosms were exposed to a single application of chlorpyrifos at four nominal concentrations (0.01, 0.1, 1, and 10 μg/L). Results showed rapid chlorpyrifos dissipation, with a half-life of 1.2 days. For some Rotifera species, including Polyarthra luminosa and Anuraeopsis sp., a consistent No Observed Effect Concentration (NOEC) of 0.01 μg/L was identified. Cyclopoida (e.g., Macrocyclops sp.) also displayed treatment-related declines, with a NOEC of 0.1 μg/L. Among macroinvertebrates, the most sensitive taxon was the Ephemeropteran Caenis sp. (NOEC: 0.1 μg/L), while other insect taxa (Odonata, Diptera) also showed significant treatment-related declines. Based on the response of some Rotifera species and the zooplankton community, we determined a mesocosm NOEC of 0.01 μg/L. The response of Rotifera taxa was explained by indirect effects resulting from a decline in copepod populations within the experimental systems, which led to an increase in Cladocera (e.g., Moina sp.), effective grazers on small rotifers. Our findings suggest a mesocosm NOEC slightly lower than those reported in other tropical and temperate studies (0.1 μg/L), potentially due to differences in species composition and interactions. Finally, our study highlights that measured chlorpyrifos concentrations in Latin American surface waters exceed levels at which both direct and indirect effects have been observed. Additional monitoring and regulatory measures are needed to control chlorpyrifos use and environmental release in tropical regions with intensive agriculture and high rainfall. © 2024 Elsevier B.V.
引用
收藏
相关论文
共 53 条
  • [1] Alvarez M., Du Mortier C., Jaureguiberry S., Venturino A., Joint probabilistic analysis of risk for aquatic species and exceedence frequency for the agricultural use of chlorpyrifos in the Pampean Region, Argentina, Environmental Toxicology and Chemistry, 38, 8, pp. 1748-1755, (2019)
  • [2] Amador P., Vega C., Navarro Pacheco N.I., Moratalla-Lopez J., Palacios J., Crettaz Minaglia M.C., Lopez I., Diaz M., Rico A., Effects of the fungicide azoxystrobin in two habitats representative of mediterranean coastal wetlands: a mesocosm experiment, Aquat. Toxicol., 267, (2024)
  • [3] Beasley V.R., Direct and indirect effects of environmental contaminants on amphibians, Reference Module in Earth Systems and Environmental Sciences, (2020)
  • [4] Brock T.C.M., Hammers-Wirtz M., Hommen U., Preuss T.G., Ratte H.-T., Roessink I., Strauss T., Van Den Brink P.J., The minimum detectable difference (MDD) and the interpretation of treatment-related effects of pesticides in experimental ecosystems, Environ. Sci. Pollut. Res., 22, 2, pp. 1160-1174, (2015)
  • [5] Brown T.L., L. H.E., Bursten B.E., Murphy C., Woodward P., Langford S., Sagatys D., George A., Chemistry: The Central Science, (2013)
  • [6] Bruhl C.A., Arias Andres M., Echeverria-Saenz S., Bundschuh M., Knabel A., Mena F., Petschick L.L., Ruepert C., Stehle S., Pesticide use in banana plantations in Costa Rica – a review of environmental and human exposure, effects and potential risks, Environ. Int., 174, (2023)
  • [7] Buchwalter D.B., Sandahl J.F., Jenkins J.J., Curtis L.R., Funciones de la absorción, la biotransformación y la sensibilidad del sitio diana en la determinación de la toxicidad diferencial del clorpirifos en el segundo a cuarto estadio de Chironomous riparius (Meigen), Aquat. Toxicol., 66, 2, pp. 149-157, (2004)
  • [8] Bundschuh M., Mesquita-Joanes F., Rico A., Camacho A., Understanding ecological complexity in a chemical stress context: a reflection on recolonization, recovery, and adaptation of aquatic populations and communities, Environ. Toxicol. Chem., 42, 9, pp. 1857-1866, (2023)
  • [9] Cabrera M., Capparelli M.V., Nacato-Ch C., Moulatlet G.M., Lopez-Heras I., Diaz Gonzalez M., Alvear-S D., Rico A., Effects of intensive agriculture and urbanization on water quality and pesticide risks in freshwater ecosystems of the Ecuadorian Amazon, Chemosphere, 337, (2023)
  • [10] Cabrera M., Capparelli M.V., Ortega-Andrade H.M., Medina-Villamizar E.J., Rico A., Effects of the insecticide imidacloprid on aquatic invertebrate communities of the Ecuadorian Amazon, Environ. Pollut., 357, (2024)