Global data-driven prediction of fire activity

被引:3
作者
Di Giuseppe, Francesca [1 ]
Mcnorton, Joe [1 ]
Lombardi, Anna [1 ]
Wetterhall, Fredrik [1 ]
机构
[1] ECMWF European Ctr Medium Range Weather Forecast, Shinfield Pk, Reading RG29AX, England
关键词
EMISSIONS; WILDFIRES; FORECASTS; MODEL;
D O I
10.1038/s41467-025-58097-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent advancements in machine learning (ML) have expanded the potential use across scientific applications, including weather and hazard forecasting. The ability of these methods to extract information from diverse and novel data types enables the transition from forecasting fire weather, to predicting actual fire activity. In this study we demonstrate that this shift is feasible also within an operational context. Traditional methods of fire forecasts tend to over predict high fire danger, particularly in fuel limited biomes, often resulting in false alarms. By using data on fuel characteristics, ignitions and observed fire activity, data-driven predictions reduce the false-alarm rate of high-danger forecasts, enhancing their accuracy. This is made possible by high quality global datasets of fuel evolution and fire detection. We find that the quality of input data is more important when improving forecasts than the complexity of the ML architecture. While the focus on ML advancements is often justified, our findings highlight the importance of investing in high-quality data and, where necessary create it through physical models. Neglecting this aspect would undermine the potential gains from ML-based approaches, emphasizing that data quality is essential to achieve meaningful progress in fire activity forecasting.
引用
收藏
页数:12
相关论文
共 88 条
[1]   Global patterns of interannual climate-fire relationships [J].
Abatzoglou, John T. ;
Williams, A. Park ;
Boschetti, Luigi ;
Zubkova, Maria ;
Kolden, Crystal A. .
GLOBAL CHANGE BIOLOGY, 2018, 24 (11) :5164-5175
[2]   A biogenic CO2 flux adjustment scheme for the mitigation of large-scale biases in global atmospheric CO2 analyses and forecasts [J].
Agusti-Panareda, Anna ;
Massart, Sebastien ;
Chevallier, Frederic ;
Balsamo, Gianpaolo ;
Boussetta, Souhail ;
Dutra, Emanuel ;
Beljaars, Anton .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (16) :10399-10418
[3]   A Brief Review of Machine Learning Algorithms in Forest Fires Science [J].
Alkhatib, Ramez ;
Sahwan, Wahib ;
Alkhatieb, Anas ;
Schuett, Brigitta .
APPLIED SCIENCES-BASEL, 2023, 13 (14)
[4]   The Global Fire Atlas of individual fire size, duration, speed and direction [J].
Andela, Niels ;
Morton, Douglas C. ;
Giglio, Louis ;
Paugam, Ronan ;
Chen, Yang ;
Hantson, Stijn ;
van der Werf, Guido R. ;
Randerson, James T. .
EARTH SYSTEM SCIENCE DATA, 2019, 11 (02) :529-552
[5]  
Anderson H. E., 1982, General Technical Report INT-122, V143
[6]   A model to predict lightning-caused fire occurrences [J].
Anderson, K .
INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2002, 11 (3-4) :163-172
[7]   Forest Fire Detection and Notification Method Based on AI and IoT Approaches [J].
Avazov, Kuldoshbay ;
Hyun, An Eui ;
Sami, S. Alabdulwahab Abrar ;
Khaitov, Azizbek ;
Abdusalomov, Akmalbek Bobomirzaevich ;
Cho, Young Im .
FUTURE INTERNET, 2023, 15 (02)
[8]   Twitter for disaster relief through sentiment analysis for COVID-19 and natural hazard crises [J].
Behl, Shivam ;
Rao, Aman ;
Aggarwal, Sahil ;
Chadha, Sakshi ;
Pannu, H. S. .
INTERNATIONAL JOURNAL OF DISASTER RISK REDUCTION, 2021, 55
[9]   The Rise of Data-Driven Weather Forecasting A First Statistical Assessment of Machine Learning–Based Weather Forecasts in an Operational-Like Context [J].
Bouallègue, Zied Ben ;
Clare, Mariana C.A. ;
Magnusson, Linus ;
Gascón, Estibaliz ;
Maier-Gerber, Michael ;
Janoušek, Martin ;
Rodwell, Mark ;
Pinault, Florian ;
Dramsch, Jesper S. ;
Lang, Simon T.K. ;
Raoult, Baudouin ;
Rabier, Florence ;
Chevallier, Matthieu ;
Sandu, Irina ;
Dueben, Peter ;
Chantry, Matthew ;
Pappenberger, Florian .
Bulletin of the American Meteorological Society, 2024, 105 (06)
[10]  
Bi KF, 2022, Arxiv, DOI [arXiv:2211.02556, DOI 10.48550/ARXIV.2211.02556]