A Note on Centralizers and Twisted Centralizers in Clifford Algebras

被引:0
|
作者
Filimoshina, Ekaterina [1 ,2 ]
Shirokov, Dmitry [1 ,3 ]
机构
[1] HSE Univ, Moscow 101000, Russia
[2] Skolkovo Inst Sci & Technol, Moscow 121205, Russia
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127051, Russia
关键词
Clifford algebra; geometric algebra; degenerate Clifford algebra; centralizer; twisted centralizer;
D O I
10.1007/s00006-024-01345-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates centralizers and twisted centralizers in degenerate and non-degenerate Clifford (geometric) algebras. We provide an explicit form of the centralizers and twisted centralizers of the subspaces of fixed grades, subspaces determined by the grade involution and the reversion, and their direct sums. The results can be useful for applications of Clifford algebras in computer science, physics, and engineering.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Centralizers in semisimple algebras, and descent spectrum in Banach algebras
    Haily, A.
    Kaidi, A.
    Rodriguez Palacios, A.
    JOURNAL OF ALGEBRA, 2011, 347 (01) : 214 - 223
  • [22] THE INDEX OF CENTRALIZERS OF ELEMENTS OF REDUCTIVE LIE ALGEBRAS
    Charbonnel, Jean-Yves
    Moreau, Anne
    DOCUMENTA MATHEMATICA, 2010, 15 : 387 - 421
  • [23] LIE CENTRALIZERS ON TRIANGULAR RINGS AND NEST ALGEBRAS
    Fosner, Ajda
    Jing, Wu
    ADVANCES IN OPERATOR THEORY, 2019, 4 (02): : 342 - 350
  • [24] On Certain Classes of Algebras in which Centralizers are Ideals
    Saha, Ripan
    Towers, David A.
    JOURNAL OF LIE THEORY, 2021, 31 (04) : 991 - 1002
  • [25] Characterizations of Lie centralizers of generalized matrix algebras
    Liu, Lei
    Gao, Kaitian
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (04) : 1656 - 1671
  • [26] On nonlinear Lie centralizers of generalized matrix algebras
    Liu, Lei
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (14): : 2693 - 2705
  • [27] Lie centralizers at unit product on generalized matrix algebras
    Liu, Lei
    Gao, Kaitian
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2025, 106 (1-2): : 1 - 28
  • [28] Lie centralizers at the zero products on generalized matrix algebras
    Fadaee, B.
    Ghahramani, H.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (08)
  • [29] Leibniz algebras in which all centralizers of nonzero elements are zero algebras
    Towers, David A.
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (02) : 681 - 686
  • [30] Some results for a class of extended centralizers on C*-algebras
    Sarma, Anamika
    Goswami, Nilakshi
    Mishra, Vishnu Narayan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (06)