Flat Blow-up Solutions for the Complex Ginzburg Landau Equation

被引:0
作者
Duong, Giao Ky [1 ]
Nouaili, Nejla [2 ]
Zaag, Hatem [3 ]
机构
[1] Univ Econ Ho Chi Minh City, Inst Appl Math, Ho Chi Minh City, Vietnam
[2] PSL Univ, Univ Paris Dauphine, CEREMADE, F-75016 Paris, France
[3] Univ Sorbonne Paris Nord, LAGA, CNRS, UMR 7539, F-93430 Villetaneuse, France
关键词
TRAVELING-WAVE CONVECTION; FINITE-TIME BLOWUP; ASYMPTOTICS; COLLAPSE; PROFILE; BURST;
D O I
10.1007/s00205-024-02052-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the complex Ginzburg-Landau equation partial derivative tu=(1+i beta)Delta u+(1+i delta)|u|p-1u-alpha u,where beta,delta,alpha is an element of R.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \partial _t u = (1 + i \beta ) \Delta u + (1 + i \delta ) |u|<^>{p-1}u - \alpha u, \quad \text {where } \beta , \delta , \alpha \in {\mathbb {R}}. \end{aligned}$$\end{document}The study focuses on investigating the finite-time blow-up phenomenon, which remains an open question for a broad range of parameters, particularly for beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} and delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}. Specifically, for a fixed beta is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in {\mathbb {R}}$$\end{document}, the existence of finite-time blow-up solutions for arbitrarily large values of |delta|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ |\delta | $$\end{document} is still unknown. According to a conjecture made by Popp et al. (Physica D Nonlinear Phenom 114:81-107 1998), when beta=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta = 0$$\end{document} and delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} is large, blow-up does not occur for generic initial data. In this paper, we show that their conjecture is not valid for all types of initial data, by presenting the existence of blow-up solutions for beta=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta = 0$$\end{document} and any delta is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \in {\mathbb {R}}$$\end{document} with different types of blowup.
引用
收藏
页数:57
相关论文
共 38 条
[1]  
Amadori Debora., 1995, Differ. Integral Equ, V8, P1977
[2]   The world of the complex Ginzburg-Landau equation [J].
Aranson, IS ;
Kramer, L .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :99-143
[3]   UNIVERSALITY IN BLOW-UP FOR NONLINEAR HEAT-EQUATIONS [J].
BRICMONT, J ;
KUPIAINEN, A .
NONLINEARITY, 1994, 7 (02) :539-575
[4]   RENORMALIZATION-GROUP AND ASYMPTOTICS OF SOLUTIONS OF NONLINEAR PARABOLIC EQUATIONS [J].
BRICMONT, J ;
KUPIAINEN, A ;
LIN, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (06) :893-922
[5]   Multibump, blow-up, self-similar solutions of the complex Ginzburg-Landau equation [J].
Budd, CJ ;
Rottschäfer, V ;
Williams, JF .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (03) :649-678
[6]  
Cazenave, 2003, COURANT LECT NOTES M
[7]   Finite-time blowup for a complex Ginzburg-Landau equation with linear driving [J].
Cazenave, Thierry ;
Dias, Joao-Paulo ;
Figueira, Mario .
JOURNAL OF EVOLUTION EQUATIONS, 2014, 14 (02) :403-415
[8]   FINITE-TIME BLOWUP FOR A COMPLEX GINZBURG-LANDAU EQUATION [J].
Cazenave, Thierry ;
Dickstein, Flavio ;
Weissler, Fred B. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (01) :244-266
[9]  
Conley C., 1978, CBMS Regional Conference Series in Mathematics, V38
[10]   Construction of Blowup Solutions for the Complex Ginzburg-Landau Equation with Critical Parameters [J].
Duong, Giao Ky ;
Nouaili, Nejla ;
Zaag, Hatem .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 285 (1411) :1-91