Structure of X-Ray Photoelectron Spectra of Magnetite

被引:0
作者
Maslakov, K. I. [1 ,2 ]
Teterin, Yu. A. [1 ,2 ]
Safonov, A. V. [3 ]
Yarzhemsky, V. G. [2 ,4 ]
Teterin, A. Yu. [2 ]
Artem'ev, G. D. [3 ]
Zin'kovskaya, I. I. [5 ]
机构
[1] Moscow State Univ, Fac Chem, Moscow 199991, Russia
[2] Kurchatov Inst, Natl Res Ctr, Moscow 123182, Russia
[3] Russian Acad Sci, Frumkin Inst Phys Chem & Electrochem, Moscow 119071, Russia
[4] Russian Acad Sci, Kurnakov Inst Gen & Inorgan Chem, Moscow 119991, Russia
[5] Joint Inst Nucl Res, Dubna 141980, Moscow Oblast, Russia
关键词
magnetite; X-ray photoelectron spectroscopy; elemental composition of the surface; XPS SPECTRA; IRON; OXIDES; PHOTOEMISSION; FE;
D O I
10.1134/S0020168524701000
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have studied the complex structure of valence-band and core-level X-ray photoelectron spectroscopy (XPS) spectra of a geological magnetite sample (Fe3O4, Sverdlovsk oblast, Russia) containing Fe2+ and Fe3+ ions and impurities (Mg, Al, Si, Ti, and others). The results demonstrate that the XPS spectra of magnetite reflect a superposition of spectra of Fe2+ (3d(6)) and Fe3+ (3d(5)) ions in their high-spin states. We have evaluated the Fe 3p, Fe 3s, and Fe 2p binding energies in the different Fe ions. The measured Fe 3s spectrum of magnetite consists of two doublets with a splitting of 5.2 eV for Fe2+ and 6.5 eV for Fe3+. These values agree with results of theoretical calculations for Fe atoms by the final state configurational interaction method: 4.0 eV for Fe2+ (3d(6)) and 6.8 eV for Fe3+ (3d(5)).
引用
收藏
页码:745 / 754
页数:10
相关论文
共 31 条
[1]   Combined multiplet theory and experiment for the Fe 2p and 3p XPS of FeO and Fe2O3 [J].
Bagus, Paul S. ;
Nelin, Connie J. ;
Brundle, C. R. ;
Crist, B. Vincent ;
Lahiri, N. ;
Rosso, Kevin M. .
JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (09)
[2]  
Band I. M., 1979, Atomic Data and Nuclear Data Tables, V23, P443, DOI 10.1016/0092-640X(79)90027-5
[3]   Environmental monitoring of low-level radioactive waste disposal in electrochemical plant facilities in Zelenogorsk, Russia [J].
Boguslavsky, A. E. ;
Gaskova, O. L. ;
Naymushina, O. S. ;
Popova, N. M. ;
Safonov, A., V .
APPLIED GEOCHEMISTRY, 2020, 119
[4]   Sorption of uranium on magnetite nanoparticles [J].
Das, Debasish ;
Sureshkumar, M. K. ;
Koley, Siddhartha ;
Mithal, Nidhi ;
Pillai, C. G. S. .
JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2010, 285 (03) :447-454
[5]   Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium [J].
Descostes, M ;
Mercier, F ;
Thromat, N ;
Beaucaire, C ;
Gautier-Soyer, M .
APPLIED SURFACE SCIENCE, 2000, 165 (04) :288-302
[6]   Uranium co-precipitation with iron oxide minerals [J].
Duff, MC ;
Coughlin, JU ;
Hunter, DB .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2002, 66 (20) :3533-3547
[7]   Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds [J].
Grosvenor, AP ;
Kobe, BA ;
Biesinger, MC ;
McIntyre, NS .
SURFACE AND INTERFACE ANALYSIS, 2004, 36 (12) :1564-1574
[8]  
Huang K.-N., 1976, Atomic Data and Nuclear Data Tables, V18, P243, DOI 10.1016/0092-640X(76)90027-9
[9]  
JAHANBAGLOO IC, 1968, AM MINERAL, V53, P14
[10]   X-ray photoelectron Fe3s and Fe3p spectra of polynuclear trimethylacetate iron complexes [J].
Kochur, A. G. ;
Ivanova, T. M. ;
Shchukarev, A. V. ;
Linko, R. V. ;
Sidorov, A. A. ;
Kiskin, M. A. ;
Novotortsev, V. M. ;
Eremenko, I. L. .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2010, 180 (1-3) :21-26