Ground State Energy of Dilute Bose Gases in 1D

被引:0
作者
Agerskov, Johannes [1 ]
Reuvers, Robin [2 ]
Solovej, Jan Philip [1 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen O, Denmark
[2] Univ Roma Tre, Dipartimento Matemat & Fis, Lgo SL Murialdo 1, I-00146 Rome, Italy
基金
欧洲研究理事会;
关键词
MANY-BODY PROBLEM; IMPENETRABLE BOSONS; ONE-DIMENSION; SYSTEM; DENSITY; FERMIONS;
D O I
10.1007/s00220-024-05193-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the ground state energy of a gas of 1D bosons with density rho, interacting through a general, repulsive 2-body potential with scattering length a, in the dilute limit rho|a|<< 1. The first terms in the expansion of the thermodynamic energy density are (pi(2)rho(3)/3)(1+2 rho a), where the leading order is the 1D free Fermi gas. This result covers the Tonks-Girardeau limit of the Lieb-Liniger model as a special case, but given the possibility that a>0, it also applies to potentials that differ significantly from a delta function. We include extensions to spinless fermions and 1D anyonic symmetries, and discuss an application to confined 3D gases.
引用
收藏
页数:41
相关论文
共 57 条
  • [1] Ground state pressure and energy density of an interacting homogeneous Bose gas in two dimensions
    Andersen, JO
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2002, 28 (04) : 389 - 396
  • [2] Low-dimensional weakly interacting Bose gases: Nonuniversal equations of state
    Astrakharchik, G. E.
    Boronat, J.
    Kurbakov, I. L.
    Lozovik, Yu. E.
    Mazzanti, F.
    [J]. PHYSICAL REVIEW A, 2010, 81 (01):
  • [3] Upper Bound for the Ground State Energy of a Dilute Bose Gas of Hard Spheres
    Basti, Giulia
    Cenatiempo, Serena
    Giuliani, Alessandro
    Olgiati, Alessandro
    Pasqualetti, Giulio
    Schlein, Benjamin
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (06)
  • [4] A new second-order upper bound for the ground state energy of dilute Bose gases
    Basti, Giulia
    Cenatiempo, Serena
    Schlein, Benjamin
    [J]. FORUM OF MATHEMATICS SIGMA, 2021, 9
  • [5] One-dimensional interacting anyon gas: Low-energy properties and haldane exclusion statistics
    Batchelor, M. T.
    Guan, X. -W.
    Oelkers, N.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (21)
  • [6] Many-body physics with ultracold gases
    Bloch, Immanuel
    Dalibard, Jean
    Zwerger, Wilhelm
    [J]. REVIEWS OF MODERN PHYSICS, 2008, 80 (03) : 885 - 964
  • [7] Bogoliubov N.N., 1947, Rus. Trans Izv. Akad. Nauk Ser. Fiz., V9, P89
  • [8] Bosonic Continuum Theory of One-Dimensional Lattice Anyons
    Bonkhoff, Martin
    Jaegering, Kevin
    Eggert, Sebastian
    Pelster, Axel
    Thorwart, Michael
    Posske, Thore
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (16)
  • [9] Correlation functions of the one-dimensional attractive bose gas
    Calabrese, Pasquale
    Caux, Jean-Sebastien
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (15)
  • [10] Deviations from off-diagonal long-range order in one-dimensional quantum systems
    Colcelli, A.
    Mussardo, G.
    Trombettoni, A.
    [J]. EPL, 2018, 122 (05)