Asymptotic expansion for the Fourier coefficients associated with the inverse of the modular discriminant function Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}

被引:0
|
作者
Gargi Mukherjee [1 ]
机构
[1] National Institute of Science Education and Research,School of Mathematical Sciences
[2] Bhubaneswar,undefined
[3] An OCC of Homi Bhabha National Institute,undefined
关键词
The modular discriminant function ; Rademacher type exact formula for ; -colored partitions; -Bessel function; Combinatorial inequalities; Higher order ; -concavity; Turán inequality of order 3; Laguerre inequalities; 05A16; 05A20; 11P82;
D O I
10.1007/s40993-024-00569-8
中图分类号
学科分类号
摘要
A plethora of investigations have been carried out in studying inequalities for the Fourier coefficients of weakly holomorphic modular forms, for example, the partition function. Recently, Bringmann, Kane, Rolen, and Tripp studied asymptotics for the k-colored partition function and more generally, for the fractional partitions arising from the Nekrasov-Okounkov formula which in turn allowed them to prove generalized multiplicative inequalities. Motivated by their idea to find interesting inequalities for the k-colored partition functions, denoted by pk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_k(n)$$\end{document}, in this paper, we prove a family of inequalities for the p24(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{24}(n)$$\end{document}. The main aim of this paper is to study the asymptotic expansion with an effective estimate for the error bound regarding the Fourier coefficients of the modular form 1/Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/\Delta $$\end{document} (up to a constant c and a power of q), where Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} is the modular discriminant function and a well-known combinatorial interpretation for the associated coefficient sequence is called 24-colored partitions, denoted by p24(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{24}(n)$$\end{document}. Consequently, we show that p24(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{24}(n)$$\end{document} satisfies 2-log\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log $$\end{document}-concavity, Turán inequality of order 3, and Laguerre inequalities of order m with 2≤m≤8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le m\le 8$$\end{document} eventually. Our method of estimations for the error term of the asymptotic expansion for p24(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{24}(n)$$\end{document} can be adapted in a more general paradigm where the Fourier coefficients of a certain class of Dedekind-eta quotients which are essentially a modular form of negative weight, admit a Rademacher type exact formula involving the I-Bessel function of positive order.
引用
收藏
相关论文
共 19 条