Integrating radiological and clinical data for clinically significant prostate cancer detection with machine learning techniques

被引:2
作者
Esteban, Luis Mariano [1 ,2 ]
Borque-Fernando, Angel [3 ,4 ,5 ]
Escorihuela, Maria Etelvina [1 ]
Esteban-Escano, Javier [6 ]
Abascal, Jose Maria [7 ]
Servian, Pol [8 ]
Morote, Juan [9 ,10 ,11 ]
机构
[1] Univ Zaragoza, Escuela Univ Politecn Almunia, Dept Appl Math, C Mayor 5, La Almunia De Dona Godina 50100, Spain
[2] Univ Zaragoza, E-50009 Zaragoza, Spain
[3] Miguel Servet Univ Hosp, Dept Urol, Zaragoza 50009, Spain
[4] Univ Zaragoza, Fac Med, Dept Surg, Area Urol, Zaragoza 50009, Spain
[5] Hlth Res Inst Aragon Fdn, Zaragoza 50009, Spain
[6] Univ Zaragoza, Escuela Univ Politecn La Almunia, Dept Elect Engn & Commun, La Almunia de Dona Godina 50100, Spain
[7] Univ Pompeu Fabra, Hosp Mar Parc Salut Mar, Dept Pathol, Parc Salut Mar, Barcelona 08003, Spain
[8] Hosp Badalona Germans Trias & Pujol, Neurosurg, Badalona, Spain
[9] Vall dHebron Hosp, Dept Urol, Barcelona 08035, Spain
[10] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Spain
[11] Vall dHebron Res Inst, Res Grp Urol, Barcelona 08035, Spain
关键词
Clinically significant prostate cancer; Machine learning; Clinical utility; SHAP values; ARTIFICIAL-INTELLIGENCE; ACCURACY; MRI;
D O I
10.1038/s41598-025-88297-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In prostate cancer (PCa), risk calculators have been proposed, relying on clinical parameters and magnetic resonance imaging (MRI) enable early prediction of clinically significant cancer (CsPCa). The prostate imaging-reporting and data system (PI-RADS) is combined with clinical variables predominantly based on logistic regression models. This study explores modeling using regularization techniques such as ridge regression, LASSO, elastic net, classification tree, tree ensemble models like random forest or XGBoost, and neural networks to predict CsPCa in a dataset of 4799 patients in Catalonia (Spain). An 80-20% split was employed for training and validation. We used predictor variables such as age, prostate-specific antigen (PSA), prostate volume, PSA density (PSAD), digital rectal exam (DRE) findings, family history of PCa, a previous negative biopsy, and PI-RADS categories. When considering a sensitivity of 0.9, in the validation set, the XGBoost model outperforms others with a specificity of 0.640, followed closely by random forest (0.638), neural network (0.634), and logistic regression (0.620). In terms of clinical utility, for a 10% missclassification of CsPCa, XGBoost can avoid 41.77% of unnecessary biopsies, followed closely by random forest (41.67%) and neural networks (41.46%), while logistic regression has a lower rate of 40.62%. Using SHAP values for model explainability, PI-RADS emerges as the most influential risk factor, particularly for individuals with PI-RADS 4 and 5. Additionally, a positive digital rectal examination (DRE) or family history of prostate cancer proves highly influential for certain individuals, while a previous negative biopsy serves as a protective factor for others.
引用
收藏
页数:21
相关论文
共 48 条
[1]   Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study [J].
Ahmed, Hashim U. ;
Bosaily, Ahmed El-Shater ;
Brown, Louise C. ;
Gabe, Rhian ;
Kaplan, Richard ;
Parmar, Mahesh K. ;
Collaco-Moraes, Yolanda ;
Ward, Katie ;
Hindley, Richard G. ;
Freeman, Alex ;
Kirkham, Alex P. ;
Oldroyd, Robert ;
Parker, Chris ;
Emberton, Mark .
LANCET, 2017, 389 (10071) :815-822
[2]   Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine [J].
Ahmed, Zeeshan ;
Mohamed, Khalid ;
Zeeshan, Saman ;
Dong, Xinqi .
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2020,
[3]   Prediction of High-grade Prostate Cancer Following Multiparametric Magnetic Resonance Imaging: Improving the Rotterdam European Randomized Study of Screening for Prostate Cancer Risk Calculators [J].
Alberts, Arnout R. ;
Roobol, Monique J. ;
Verbeek, Jan F. M. ;
Schoots, Ivo G. ;
Chiu, Peter K. ;
Osses, Daniel F. ;
Tijsterman, Jasper D. ;
Beerlage, Harrie P. ;
Mannaerts, Christophe K. ;
Schimmoeller, Lars ;
Albers, Peter ;
Arsov, Christian .
EUROPEAN UROLOGY, 2019, 75 (02) :310-318
[4]   Artificial Intelligence-assisted Prostate Cancer Diagnosis: Radiologic-Pathologic Correlation [J].
Alcala Mata, Lidia ;
Antonio Retamero, Juan ;
Gupta, Rajan T. ;
Garcia Figueras, Roberto ;
Luna, Antonio .
RADIOGRAPHICS, 2021, 41 (06) :1676-1697
[5]  
[Anonymous], 2023, R Foundation for Statistical Computing
[6]   The Role of Radiomics in the Prediction of Clinically Significant Prostate Cancer in the PI-RADS v2 and v2.1 Era: A Systematic Review [J].
Antolin, Andreu ;
Roson, Nuria ;
Mast, Richard ;
Arce, Javier ;
Almodovar, Ramon ;
Cortada, Roger ;
Maceda, Almudena ;
Escobar, Manuel ;
Trilla, Enrique ;
Morote, Juan .
CANCERS, 2024, 16 (17)
[7]   Artificial intelligence for precision oncology: beyond patient stratification [J].
Azuaje, Francisco .
NPJ PRECISION ONCOLOGY, 2019, 3 (1)
[8]   Artificial Intelligence in Medicine [J].
Beam, Andrew L. ;
Drazen, Jeffrey M. ;
Kohane, Isaac S. ;
Leong, Tze-Yun ;
Manrai, Arjun K. ;
Rubin, Eric J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2023, 388 (13) :1220-1221
[9]   A Preliminary Study of the Ability of the 4Kscore test, the Prostate Cancer Prevention Trial-Risk Calculator and the European Research Screening Prostate-Risk Calculator for Predicting High-Grade Prostate Cancer [J].
Borque-Fernando, A. ;
Esteban-Escano, L. M. ;
Rubio-Briones, J. ;
Lou-Mercade, A. C. ;
Garcia-Ruiz, R. ;
Tejero-Sanchez, A. ;
Munoz-Rivero, M. V. ;
Cabanuz-Plo, T. ;
Alfaro-Torres, J. ;
Marquina-Ibanez, I. M. ;
Hakim-Alonso, S. ;
Mejia-Urbaez, E. ;
Gil-Fabra, J. ;
Gil-Martinez, P. ;
Avarez-Alegret, R. ;
Sanz, G. ;
Gil-Sanz, M. J. .
ACTAS UROLOGICAS ESPANOLAS, 2016, 40 (03) :155-163
[10]   Screening for Prostate Cancer With Modern Diagnostics-Another Piece of the Puzzle [J].
Bratt, Ola .
JAMA NETWORK OPEN, 2024, 7 (02)