Mathematical analysis of fractional Chlamydia pandemic model

被引:7
作者
Alqahtani, Zuhur [1 ]
Almuneef, Areej [1 ]
Darassi, Mahmoud H. [2 ]
Abuhour, Yousef [2 ]
Al-arydah, Mo'tassem [3 ]
Safi, Mohammad A. [4 ]
Al-Hdaibat, Bashir [4 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
[2] Princess Sumaya Univ Technol, Dept Basic Sci, POB 11941, Amman, Jordan
[3] Khalifa Univ, Dept Math, Abu Dhabi, U Arab Emirates
[4] Hashemite Univ, Fac Sci, Dept Math, POB 330127, Zarqa 13133, Jordan
关键词
Stability analysis; Fractional derivatives; Sensitivity analysis; Equiliburia;
D O I
10.1038/s41598-024-82428-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we developed a Caputo-Fractional Chlamydia pandemic model to describe the disease's spread. We demonstrated the model's positivity and boundedness, ensuring biological relevance. The existence and uniqueness of the model's solution were established, and we investigated the stability of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-fractional order model. Our analysis proved that the disease-free equilibrium point is locally asymptotically stable. Additionally, we showed that the model has a single endemic equilibrium point, which is globally asymptotically stable when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_0$$\end{document} exceeds 1. Using Latin Hypercube sampling and partial rank correlation coefficients (PRCCs), sensitivity analysis identified key parameters influencing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_0$$\end{document}. Numerical simulations further illustrated the impact of parameter variations on disease dynamics.
引用
收藏
页数:15
相关论文
共 42 条
[31]   A Study on the 3D Hopfield Neural Network Model via Nonlocal Atangana-Baleanu Operators [J].
Rezapour, Shahram ;
Kumar, Pushpendra ;
Erturk, Vedat Suat ;
Etemad, Sina .
COMPLEXITY, 2022, 2022
[32]   Analysis of a delayed Chlamydia epidemic model with pulse vaccination [J].
Samanta, G. P. ;
Sharma, Swarnali .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 230 :555-569
[33]  
Samko S. G., 1993, Theory and applications
[34]   Mathematical study of in-host dynamics of Chlamydia trachomatis [J].
Sharomi, O. ;
Gumel, A. B. .
IMA JOURNAL OF APPLIED MATHEMATICS, 2012, 77 (02) :109-139
[35]  
Stephens R.S., 1999, Chlamydia : Intracellular Biology, Pathogenesis and Immunity
[36]   Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission [J].
van den Driessche, P ;
Watmough, J .
MATHEMATICAL BIOSCIENCES, 2002, 180 :29-48
[37]   Volterra-type Lyapunov functions for fractional-order epidemic systems [J].
Vargas-De-Leon, Cruz .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 24 (1-3) :75-85
[38]   Role of fractional derivatives in the mathematical modeling of the transmission of Chlamydia in the United States from 1989 to 2019 [J].
Vellappandi, M. ;
Kumar, Pushpendra ;
Govindaraj, V .
NONLINEAR DYNAMICS, 2023, 111 (05) :4915-4929
[39]   A case study of 2019-nCoV in Russia using integer and fractional order derivatives [J].
Vellappandi, M. ;
Kumar, Pushpendra ;
Govindaraj, Venkatesan .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (12) :12258-12272
[40]   An optimal control problem for mosaic disease via Caputo fractional derivative [J].
Vellappandi, M. ;
Kumar, Pushpendra ;
Govindaraj, V ;
Albalawi, Wedad .
ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (10) :8027-8037