Mathematical analysis of fractional Chlamydia pandemic model

被引:7
作者
Alqahtani, Zuhur [1 ]
Almuneef, Areej [1 ]
Darassi, Mahmoud H. [2 ]
Abuhour, Yousef [2 ]
Al-arydah, Mo'tassem [3 ]
Safi, Mohammad A. [4 ]
Al-Hdaibat, Bashir [4 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
[2] Princess Sumaya Univ Technol, Dept Basic Sci, POB 11941, Amman, Jordan
[3] Khalifa Univ, Dept Math, Abu Dhabi, U Arab Emirates
[4] Hashemite Univ, Fac Sci, Dept Math, POB 330127, Zarqa 13133, Jordan
关键词
Stability analysis; Fractional derivatives; Sensitivity analysis; Equiliburia;
D O I
10.1038/s41598-024-82428-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we developed a Caputo-Fractional Chlamydia pandemic model to describe the disease's spread. We demonstrated the model's positivity and boundedness, ensuring biological relevance. The existence and uniqueness of the model's solution were established, and we investigated the stability of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-fractional order model. Our analysis proved that the disease-free equilibrium point is locally asymptotically stable. Additionally, we showed that the model has a single endemic equilibrium point, which is globally asymptotically stable when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_0$$\end{document} exceeds 1. Using Latin Hypercube sampling and partial rank correlation coefficients (PRCCs), sensitivity analysis identified key parameters influencing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_0$$\end{document}. Numerical simulations further illustrated the impact of parameter variations on disease dynamics.
引用
收藏
页数:15
相关论文
共 42 条
[1]   Stability and bifurcation analysis of a fractional-order model of cell-to-cell spread of HIV-1 with a discrete time delay [J].
Abbas, Syed ;
Tyagi, Swati ;
Kumar, Pushpendra ;
Erturk, Vedat Suat ;
Momani, Shaher .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (11) :7081-7095
[2]   The chlamydial developmental cycle [J].
AbdelRahman, YM ;
Belland, RJ .
FEMS MICROBIOLOGY REVIEWS, 2005, 29 (05) :949-959
[3]   Two-sex logistic model for human papillomavirus and optimal vaccine [J].
Al-Arydah, Mo'tassem .
INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2021, 14 (03)
[4]   A novel mathematical study to understand the Lumpy skin disease (LSD) using modified parameterized approach [J].
Alfwzan, Wafa F. ;
DarAssi, Mahmoud H. ;
Allehiany, F. M. ;
Khan, Muhammad Altaf ;
Alshahrani, Mohammad Y. ;
Tag-Eldin, Elsayed M. .
RESULTS IN PHYSICS, 2023, 51
[5]  
[Anonymous], 2023, Chlamydia - CDC detailed fact sheet
[6]   Stochastic Runge-Kutta for numerical treatment of dengue epidemic model with Brownian uncertainty [J].
Anwar, Nabeela ;
Ahmad, Iftikhar ;
Javaid, Hijab ;
Kiani, Adiqa Kausar ;
Shoaib, Muhammad ;
Raja, Muhammad Asif Zahoor .
MODERN PHYSICS LETTERS B, 2025, 39 (03)
[7]   Novel neuro-stochastic adaptive supervised learning for numerical treatment of nonlinear epidemic delay differential system with impact of double diseases [J].
Anwar, Nabeela ;
Ahmad, Iftikhar ;
Kiani, Adiqa Kausar ;
Shoaib, Muhammad ;
Raja, Muhammad Asif Zahoor .
INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2024,
[8]   On a new and generalized fractional model for a real cholera outbreak [J].
Baleanu, Dumitru ;
Ghassabzade, Fahimeh Akhavan ;
Nieto, Juan J. ;
Jajarmi, Amin .
ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (11) :9175-9186
[9]   A Survey of Recent Advances in Fractional Order Control for Time Delay Systems [J].
Birs, Isabela ;
Muresan, Cristina ;
Nascu, Ioan ;
Ionescu, Clara .
IEEE ACCESS, 2019, 7 :30951-30965
[10]   SENSITIVITY AND UNCERTAINTY ANALYSIS OF COMPLEX-MODELS OF DISEASE TRANSMISSION - AN HIV MODEL, AS AN EXAMPLE [J].
BLOWER, SM ;
DOWLATABADI, H .
INTERNATIONAL STATISTICAL REVIEW, 1994, 62 (02) :229-243