A New Family of q-Supercongruences from Jackson’s 6ϕ5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _5$$\end{document} SummationA New Family of q-SupercongruencesV. J. W. Guo

被引:0
作者
Victor J. W. Guo [1 ]
机构
[1] Hangzhou Normal University,School of Mathematics
关键词
-Congruences; Jackson’s ; summation; creative microscoping; Chinese remainder theorem for polynomials; 33D15; 11A07, 11B65;
D O I
10.1007/s00025-025-02369-7
中图分类号
学科分类号
摘要
We obtain a new family of q-congruences modulo the fourth power of a cyclotomic polynomial. The key ingredients of our proof are the creative microscoping method, Jackson’s 6ϕ5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _5$$\end{document} summation, and the Chinese remainder theorem for polynomials.
引用
收藏
相关论文
empty
未找到相关数据