Boundedness criterion and global solvability for the three-species food chain model with taxis mechanisms

被引:0
作者
Jin, Hai-Yang [1 ]
Zou, Feifei [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510640, Peoples R China
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2025年 / 32卷 / 03期
基金
中国国家自然科学基金;
关键词
Food chain model; Alarm-taxis; Prey-taxis; Boundedness criterion; Energy estimates; PREDATOR-PREY MODEL; TROPHIC INTERACTIONS; CHEMOTAXIS SYSTEM; CHAOS; EXISTENCE; STABILIZATION; DIFFUSION; STABILITY; DYNAMICS;
D O I
10.1007/s00030-025-01040-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we shall investigate a three-species food chain model with taxis mechanisms including prey-taxis and alarm-taxis in a smooth bounded domain Omega subset of Rn(n >= 1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}<^>{n}(n\ge 1)$$\end{document} with homogeneous Neumann boundary conditions. More precisely, we first establish the boundedness criterion for a general food chain model with various taxis mechanisms for arbitrary spatial dimensions by using the semigroup estimates and coupled energy estimates. With the boundedness criterion, we prove the global boundedness of the solution with the general functional response functions under some smallness assumptions on the taxis coefficients by using the weighted energy estimates. On the other hand, for some special functional response functions including Beddington-DeAngelis type, ratio-dependent type and Harrison type, we also obtain the global existence of the solution with uniform-in-time bound without any smallness assumptions on the taxis coefficients or initial data.
引用
收藏
页数:33
相关论文
共 51 条
[1]   Global well-posedness and stability analysis of prey-predator model with indirect prey-taxis [J].
Ahn, Inkyung ;
Yoon, Changwook .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (08) :4222-4255
[2]  
Amann H., 1990, DIFFERENTIAL INTEGRA, V3, P13, DOI DOI 10.57262/DIE/1371586185
[3]  
Amann H., 1993, Function Spaces,Differential Operators and Nonlinear Analysis, P9, DOI DOI 10.1007/978-3-663-11336-2_1
[4]   MUTUAL INTERFERENCE BETWEEN PARASITES OR PREDATORS AND ITS EFFECT ON SEARCHING EFFICIENCY [J].
BEDDINGTON, JR .
JOURNAL OF ANIMAL ECOLOGY, 1975, 44 (01) :331-340
[5]   Modelling of predator-prey trophic interactions. Part II: Three trophic levels [J].
Buffoni, Giuseppe ;
Cassinari, Maria Paola ;
Groppi, Maria .
JOURNAL OF MATHEMATICAL BIOLOGY, 2007, 54 (05) :623-644
[6]  
Burkenroad MD, 1943, J MAR RES, V5, P161
[7]   Asymptotic dynamics and spatial patterns of a ratio-dependent predator-prey system with prey-taxis [J].
Cai, Yongli ;
Cao, Qian ;
Wang, Zhi-An .
APPLICABLE ANALYSIS, 2022, 101 (01) :81-99
[8]   Boundedness in a three-dimensional chemotaxis-haptotaxis model [J].
Cao, Xinru .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (01)
[9]   MODEL FOR TROPHIC INTERACTION [J].
DEANGELIS, DL ;
GOLDSTEIN, RA ;
ONEILL, RV .
ECOLOGY, 1975, 56 (04) :881-892
[10]   Classical and generalized solutions of an alarm-taxis model [J].
Fuest, Mario ;
Lankeit, Johannes .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (06)