Video anomaly behavior detection method based on attention-enhanced graph convolution and normalizing flows

被引:0
|
作者
Zhu, Honglei [1 ]
Qiao, Kaixin [1 ]
Xu, Zhigang [1 ]
机构
[1] Lanzhou Univ Technol, Sch Comp & Commun, 36 Pengjiaping Rd, Lanzhou 730050, Gansu, Peoples R China
关键词
Human skeleton graph; Video anomaly behavior; Attention; Normalizing flows;
D O I
10.1007/s11760-025-03903-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Video anomaly behavior detection play a critical role in intelligent security, healthcare, and other domains, driven by the rapid advancement of video surveillance technologies. However, existing anomaly detection methods often focus primarily on local features when learning the strength of skeletal connections, neglecting global connectivity and feature channel information. This limitation hampers improvements in detection accuracy, making it difficult to enhance overall performance. To address this issue, we proposed a Video Anomaly Behavior Detection Method based on Attention-Enhanced Graph Convolution and Normalizing Flows. Initially, the spatial attention graph convolution technique is employed to acquire the spatial global characteristics of skeletons. Simultaneously, the channel attention graph convolution method is applied to capture the channel information of the spatial features. Subsequently, the spatial attention graph convolution and channel attention graph convolution are combined simultaneously within a spatiotemporal graph convolutional network, creating an attention-enhanced graph convolutional network. Additionally, we propose a detection framework that incorporates normalizing flows, which maps feature information to a Gaussian model serving as a prior distribution. This enables the calculation of the probability distribution for normal behaviors, using the likelihood of the Gaussian model to assess new samples. Experimental results demonstrate that the proposed method achieves superior detection performance with reduced false alarm rates on the ShanghaiTech and HR-ShanghaiTech datasets.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Anomaly Detection Algorithm of Power System Based on Graph Structure and Anomaly Attention
    Gao, Yifan
    Zhang, Jieming
    Chen, Zhanchen
    Chen, Xianchao
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (01): : 493 - 507
  • [32] Attention-Enhanced Graph Convolutional Networks for Aspect-Based Sentiment Classification with Multi-Head Attention
    Xu, Guangtao
    Liu, Peiyu
    Zhu, Zhenfang
    Liu, Jie
    Xu, Fuyong
    APPLIED SCIENCES-BASEL, 2021, 11 (08):
  • [33] Graph-Based Anomaly Detection via Attention Mechanism
    Yu, Yangming
    Zha, Zhiyong
    Jin, Bo
    Wu, Geng
    Dong, Chenxi
    INTELLIGENT COMPUTING THEORIES AND APPLICATION (ICIC 2022), PT I, 2022, 13393 : 401 - 411
  • [34] Evolving graph-based video crowd anomaly detection
    Yang, Meng
    Feng, Yanghe
    Rao, Aravinda S.
    Rajasegarar, Sutharshan
    Tian, Shucong
    Zhou, Zhengchun
    VISUAL COMPUTER, 2024, 40 (01): : 303 - 318
  • [35] Graph based anomaly detection in human action video sequence
    Kavimandan, Pranoti Shrikant
    Kapoor, Rajiv
    Yadav, Kalpana
    JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2022, 73 (05): : 318 - 324
  • [36] Evolving graph-based video crowd anomaly detection
    Meng Yang
    Yanghe Feng
    Aravinda S. Rao
    Sutharshan Rajasegarar
    Shucong Tian
    Zhengchun Zhou
    The Visual Computer, 2024, 40 : 303 - 318
  • [37] Attention-based residual autoencoder for video anomaly detection
    Le, Viet-Tuan
    Kim, Yong-Guk
    APPLIED INTELLIGENCE, 2023, 53 (03) : 3240 - 3254
  • [38] Attention-based residual autoencoder for video anomaly detection
    Viet-Tuan Le
    Yong-Guk Kim
    Applied Intelligence, 2023, 53 : 3240 - 3254
  • [39] Learning Graph Enhanced Spatial-Temporal Coherence for Video Anomaly Detection
    Cheng, Kai
    Liu, Yang
    Zeng, Xinhua
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 314 - 318
  • [40] Multivariate Time Series Anomaly Detection Based on Multiple Spatiotemporal Graph Convolution
    He, Shiming
    Guo, Qingqing
    Li, Genxin
    Xie, Kun
    Sharma, Pradip Kumar
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74