Existence and stability of near-constant solutions of variable-coefficient scalar field equations

被引:0
作者
Alammari, Mashael [1 ]
Snelson, Stanley [1 ]
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
来源
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2025年 / 6卷 / 01期
关键词
Scalar-field equations; Variable coefficients; Stationary solutions; Asymptotic stability; KLEIN-GORDON EQUATION; NONLINEAR SCHRODINGER-EQUATION; ASYMPTOTIC STABILITY; DECAY; NLS; NONEXISTENCE; SCATTERING; BREATHERS; SOLITONS; KINKS;
D O I
10.1007/s42985-024-00310-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article studies a class of semilinear scalar field equations on the real line with variable coefficients in the linear terms. These coefficients are not necessarily small perturbations of a constant. We prove that under suitable conditions, the non-translation-invariant linear operator leads to steady states that are "almost constant" in the spatial variable. The main challenge of the proof is due to a spectral obstruction that cannot be treated perturbatively. Next, we consider stability of constant and near-constant steady states. We establish asymptotic stability for the vacuum state with respect to perturbations in H1xL2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1\times L<^>2$$\end{document}, without placing any parity assumptions on the coefficients, potential, or initial data. Finally, under a parity assumption, we show asymptotic stability for near-constant steady states.
引用
收藏
页数:28
相关论文
共 42 条
  • [1] Linear and orbital stability analysis for solitary-wave solutions of variable-coefficient scalar-field equations
    Alammari, Mashael
    Snelson, Stanley
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2022, 19 (01) : 175 - 201
  • [2] On Asymptotic Stability of the Sine-Gordon Kink in the Energy Space
    Alejo, Miguel A.
    Munoz, Claudio
    Palacios, Jose M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (01) : 581 - 636
  • [3] ON DISPERSION OF SMALL ENERGY SOLUTIONS OF THE NONLINEAR KLEIN GORDON EQUATION WITH A POTENTIAL
    Bambusi, Dario
    Cuccagna, Scipio
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2011, 133 (05) : 1421 - 1468
  • [4] Chen G, 2022, Arxiv, DOI arXiv:2009.04260
  • [5] Cuccagna S, 2008, T AM MATH SOC, V360, P2581
  • [6] Asymptotic stability of kink with internal modes under odd perturbation
    Cuccagna, Scipio
    Maeda, Masaya
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (01):
  • [7] On Selection of Standing Wave at Small Energy in the 1D Cubic Schrodinger Equation with a Trapping Potential
    Cuccagna, Scipio
    Maeda, Masaya
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 396 (03) : 1135 - 1186
  • [8] ON STABILITY OF SMALL SOLITONS OF THE 1-D NLS WITH A TRAPPING DELTA POTENTIAL
    Cuccagna, Scipio
    Maeda, Masaya
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (06) : 4311 - 4331
  • [9] Decay and Scattering of Small Solutions of Pure Power NLS in R with p &gt; 3 and with a Potential
    Cuccagna, Scipio
    Georgiev, Vladimir
    Visciglia, Nicola
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (06) : 957 - 981
  • [10] SINE-GORDON WOBBLES THROUGH BACKLUND TRANSFORMATIONS
    Cuenda, Sara
    Quintero, Niurka R.
    Sanchez, Angel
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (05): : 1047 - 1056