Oblique dual and g-dual frames in separable quaternionic Hilbert spaces

被引:0
作者
Tian, Yu [1 ]
Zhang, Wei [2 ]
机构
[1] Zhengzhou Univ Light Ind, Dept Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
[2] Henan Univ Econ & Law, Sch Math & Informat Sci, Zhengzhou 450046, Peoples R China
基金
中国国家自然科学基金;
关键词
Quaternionic Hilbert space; Frame; Oblique dual frame; G-dual frame; GABOR FRAMES;
D O I
10.1007/s11868-024-00649-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quaternionic Hilbert spaces have important applications in quantum physics and the frame theory in quaternionic Hilbert spaces can handle many practical problems in physics. In this paper, we investigate oblique dual and g-dual frames in separable quaternionic Hilbert spaces. We provide a sufficient condition for commutativity of the oblique dual frames in quaternion Hilbert spaces. We present a parametric and algebraic formula for all oblique duals of any given frame in a closed subspace U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document} by utilizing a new (right) pre-frame operator. We prove that the canonical oblique dual has a minimum norm representation of elements in U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document}. We provide a method for constructing an oblique dual frame from two Bessel sequences. We show that g-duality relation is symmetric and get a necessary condition for g-duality of the sum of two g-dual frames. We also present a parametric expression of all g-dual frames of any given frame and show that approximate dual frame pairs form g-dual frames. We study perturbation-stability of g-dual frames.
引用
收藏
页数:23
相关论文
共 49 条
[21]   Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors [J].
Eldar, YC .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2003, 9 (01) :77-96
[22]   Dual and canonical dual K-Bessel sequences in quaternionic Hilbert spaces [J].
Ellouz, Hanen .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
[23]   Some Properties of K-Frames in Quaternionic Hilbert Spaces [J].
Ellouz, Hanen .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (01)
[24]   Construction of approximate dual wavelet frames [J].
Feichtinger, Hans G. ;
Onchis, Darian M. ;
Wiesmeyr, Christoph .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (01) :273-282
[25]   Quasi-orthogonal decompositions of structured frames [J].
Fornasier, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (01) :180-199
[26]   Some results on frames by pre-frame operators in Q-Hilbert spaces [J].
Fu, Yan Ling ;
Zhang, Wei .
AIMS MATHEMATICS, 2023, 8 (12) :28878-28896
[27]   Characterizations and Representations of H-S-Frames in Hilbert Spaces [J].
Fu, Yan-Ling ;
Zhang, Wei ;
Tian, Yu .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (13) :1409-1427
[28]  
Ghiati M, 2024, J PSEUDO-DIFFER OPER, V15, DOI 10.1007/s11868-023-00571-1
[29]   CONTINUOUS SLICE FUNCTIONAL CALCULUS IN QUATERNIONIC HILBERT SPACES [J].
Ghiloni, Riccardo ;
Moretti, Valter ;
Perotti, Alessandro .
REVIEWS IN MATHEMATICAL PHYSICS, 2013, 25 (04)
[30]  
Grchenig K, 2001, Foundations of Time-Frequency Analysis, DOI [10.1007/978-1-4612-0003-1, DOI 10.1007/978-1-4612-0003-1]