Oblique dual and g-dual frames in separable quaternionic Hilbert spaces

被引:0
作者
Tian, Yu [1 ]
Zhang, Wei [2 ]
机构
[1] Zhengzhou Univ Light Ind, Dept Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
[2] Henan Univ Econ & Law, Sch Math & Informat Sci, Zhengzhou 450046, Peoples R China
基金
中国国家自然科学基金;
关键词
Quaternionic Hilbert space; Frame; Oblique dual frame; G-dual frame; GABOR FRAMES;
D O I
10.1007/s11868-024-00649-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quaternionic Hilbert spaces have important applications in quantum physics and the frame theory in quaternionic Hilbert spaces can handle many practical problems in physics. In this paper, we investigate oblique dual and g-dual frames in separable quaternionic Hilbert spaces. We provide a sufficient condition for commutativity of the oblique dual frames in quaternion Hilbert spaces. We present a parametric and algebraic formula for all oblique duals of any given frame in a closed subspace U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document} by utilizing a new (right) pre-frame operator. We prove that the canonical oblique dual has a minimum norm representation of elements in U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document}. We provide a method for constructing an oblique dual frame from two Bessel sequences. We show that g-duality relation is symmetric and get a necessary condition for g-duality of the sum of two g-dual frames. We also present a parametric expression of all g-dual frames of any given frame and show that approximate dual frame pairs form g-dual frames. We study perturbation-stability of g-dual frames.
引用
收藏
页数:23
相关论文
共 49 条
[1]  
Adler S. L., 1995, QUATERNIONIC QUANTUM
[2]   Dynamical sampling for shift-preserving operators [J].
Aguilera, A. ;
Cabrelli, C. ;
Carbajal, D. ;
Paternostro, V. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 51 :258-274
[3]  
[Anonymous], 2000, Mem. Amer. Math. Soc.
[4]   The logic of quantum mechanics [J].
Birkhoff, G ;
von Neumann, J .
ANNALS OF MATHEMATICS, 1936, 37 :823-843
[5]   A characterization of affine dual frames in L2 (Rn) [J].
Bownik, M .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2000, 8 (02) :203-221
[6]   Continuous Curvelet Transform -: II.: Discretization and frames [J].
Candès, EJ ;
Donoho, DL .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (02) :198-222
[7]   Harmonic analysis of neural networks [J].
Candès, EJ .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1999, 6 (02) :197-218
[8]  
Casazza P., 2004, Contemp. Math., V345, P87, DOI [10.1090/conm/345/06242, DOI 10.1090/conm/345/06242]
[9]   Fusion frames and distributed processing [J].
Casazza, Peter G. ;
Kutyniok, Gitta ;
Li, Shidong .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2008, 25 (01) :114-132
[10]   The art of frame theory [J].
Casazza, PG .
TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (02) :129-201