Recurrent Deep Learning for Beam Pattern Synthesis in Optimized Antenna Arrays

被引:0
作者
Arce, Armando [1 ]
Arce, Fernando [2 ]
Stevens-Navarro, Enrique [3 ]
Pineda-Rico, Ulises [3 ]
Cardenas-Juarez, Marco [3 ]
Garcia-Barrientos, Abel [3 ]
机构
[1] Univ Autonoma San Luis Potosi UASLP, Fac Ciencias, Consejo Nacl Human Ciencia & Tecnol CONAHCYT, San Luis Potosi 78295, Mexico
[2] Ctr Invest Opt CIO AC, Leon 37150, Mexico
[3] Univ Autonoma San Luis Potosi UASLP, Fac Sci, San Luis Potosi 78295, Mexico
来源
APPLIED SCIENCES-BASEL | 2025年 / 15卷 / 01期
关键词
deep learning; neural networks; antenna arrays; antenna radiation patterns; synthesis; optimization; evolutionary algorithm; fully connected layers; CNN; LSTM-RNN model; PERFORMANCE;
D O I
10.3390/app15010204
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work proposes and describes a deep learning-based approach utilizing recurrent neural networks (RNNs) for beam pattern synthesis considering uniform linear arrays. In this particular case, the deep neural network (DNN) learns from previously optimized radiation patterns as inputs and generates complex excitations as output. Beam patterns are optimized using a genetic algorithm during the training phase in order to reduce sidelobes and achieve high directivity. Idealized and test beam patterns are employed as inputs for the DNN, demonstrating their effectiveness in scenarios with high prediction complexity and closely spaced elements. Additionally, a comparative analysis is conducted among the three DNN architectures. Numerical experiments reveal improvements in performance when using the long short-term memory network (LSTM) compared to fully connected and convolutional neural networks.
引用
收藏
页数:14
相关论文
共 34 条
[1]  
Akinsolu MO, 2020, PROC EUR CONF ANTENN
[2]   A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications [J].
Alzubaidi, Laith ;
Bai, Jinshuai ;
Al-Sabaawi, Aiman ;
Santamaria, Jose ;
Albahri, A. S. ;
Al-dabbagh, Bashar Sami Nayyef ;
Fadhel, Mohammed. A. A. ;
Manoufali, Mohamed ;
Zhang, Jinglan ;
Al-Timemy, Ali. H. H. ;
Duan, Ye ;
Abdullah, Amjed ;
Farhan, Laith ;
Lu, Yi ;
Gupta, Ashish ;
Albu, Felix ;
Abbosh, Amin ;
Gu, Yuantong .
JOURNAL OF BIG DATA, 2023, 10 (01)
[3]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[4]  
[Anonymous], 1989, Genetic algorithm in search, optimization, and machine learning
[5]  
Audry S, 2021, LEONARDO SER, P1, DOI 10.7551/mitpress/12832.001.0001
[6]  
Balanis C. A., 1997, ANTENNA THEORY ANAL, V2nd
[7]   AESA Adaptive Beamforming Using Deep Learning [J].
Bianco, Simone ;
Napoletano, Paolo ;
Raimondi, Alberto ;
Feo, Maurizio ;
Petraglia, Giovanni ;
Vinetti, Pietro .
2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
[8]   Big Data Deep Learning: Challenges and Perspectives [J].
Chen, Xue-Wen ;
Lin, Xiaotong .
IEEE ACCESS, 2014, 2 :514-525
[9]  
Chollet F., 2021, Deep Learning with Python
[10]  
Chollet F., 2015, KERAS