共 50 条
A self-powered soft triboelectric-electrohydrodynamic pump
被引:5
作者:
Li, Fangming
[1
]
Sun, Shuowen
[1
]
Wan, Xingfu
[1
]
Sun, Minzheng
[1
]
Zhang, Steven L.
[2
,3
]
Xu, Minyi
[1
,4
]
机构:
[1] Dalian Maritime Univ, Marine Engn Coll, State Key Lab Maritime Technol & Safety, Dalian 116026, Peoples R China
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Max Planck Inst Intelligent Syst, Robot Mat Dept, D-70569 Stuttgart, Germany
[4] Guangzhou Inst Blue Energy, Guangzhou 510555, Peoples R China
基金:
中国国家自然科学基金;
关键词:
ENERGY;
D O I:
10.1038/s41467-025-56679-z
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Soft pumps have the potential to transform industries including soft robotics, wearable devices, microfluidics and biomedical devices, but their efficiency and power supply limitations hinder prolonged operation. Here, we report a self-powered triboelectric-electrohydrodynamic pump, which combines a soft electrohydrodynamic pump driven by an electrostatic generator, specifically a triboelectric nanogenerator. The triboelectric nanogenerator collects ambient energy and converts it into high-voltage power source, allowing it to self-power an electrohydrodynamic pump and thus eliminating the need for external power supply. Using power management circuit, geometric shape optimization, and stacking methods, we achieve a maximum pressure of 4.49 kPa and a maximum flow rate of 502 mL/min. We demonstrate the pump's versatility in applications such as self-powered soft actuators, oil pumping in microfluidics, and oil purification. The triboelectric-electrohydrodynamic pump holds promising applications, and offers new insights for the development of fully self-powered systems.
引用
收藏
页数:11
相关论文
共 50 条