A self-powered soft triboelectric-electrohydrodynamic pump

被引:0
|
作者
Li, Fangming [1 ]
Sun, Shuowen [1 ]
Wan, Xingfu [1 ]
Sun, Minzheng [1 ]
Zhang, Steven L. [2 ,3 ]
Xu, Minyi [1 ,4 ]
机构
[1] Dalian Maritime Univ, Marine Engn Coll, State Key Lab Maritime Technol & Safety, Dalian 116026, Peoples R China
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Max Planck Inst Intelligent Syst, Robot Mat Dept, D-70569 Stuttgart, Germany
[4] Guangzhou Inst Blue Energy, Guangzhou 510555, Peoples R China
基金
中国国家自然科学基金;
关键词
ENERGY;
D O I
10.1038/s41467-025-56679-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Soft pumps have the potential to transform industries including soft robotics, wearable devices, microfluidics and biomedical devices, but their efficiency and power supply limitations hinder prolonged operation. Here, we report a self-powered triboelectric-electrohydrodynamic pump, which combines a soft electrohydrodynamic pump driven by an electrostatic generator, specifically a triboelectric nanogenerator. The triboelectric nanogenerator collects ambient energy and converts it into high-voltage power source, allowing it to self-power an electrohydrodynamic pump and thus eliminating the need for external power supply. Using power management circuit, geometric shape optimization, and stacking methods, we achieve a maximum pressure of 4.49 kPa and a maximum flow rate of 502 mL/min. We demonstrate the pump's versatility in applications such as self-powered soft actuators, oil pumping in microfluidics, and oil purification. The triboelectric-electrohydrodynamic pump holds promising applications, and offers new insights for the development of fully self-powered systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Self-Powered Triboelectric Nanosensors for Soft Endoscopic and Catheter Applications
    Timana, Jose
    Montufar, Claudia
    Ccorahua, Robert
    Vela, Emir A.
    2020 INTERNATIONAL CONFERENCE ON MANIPULATION, AUTOMATION AND ROBOTICS AT SMALL SCALES (MARSS 2020), 2020, : 65 - 66
  • [2] Self-powered Triboelectric Sensors
    Choi, Dukhyun
    2019 13TH IEEE INTERNATIONAL CONFERENCE ON NANO/MOLECULAR MEDICINE & ENGINEERING (IEEE-NANOMED 2019), 2019, : 39 - 39
  • [3] Soft triboelectric nanogenerators for mechanical energy scavenging and self-powered sensors
    Song, Yiding
    Wang, Nan
    Hu, Chaosheng
    Wang, Zhong Lin
    Yang, Ya
    NANO ENERGY, 2021, 84
  • [4] Triboelectric nanogenerators for self-powered neurostimulation
    Xu, Shumao
    Manshaii, Farid
    Xiao, Xiao
    Yin, Junyi
    Chen, Jun
    NANO RESEARCH, 2024, 17 (10) : 8926 - 8941
  • [5] Self-powered triboelectric MEMS accelerometer
    Alzgool, Mohammad
    Tian, Yu
    Davaji, Benyamin
    Towfighian, Shahrzad
    NANO ENERGY, 2023, 109
  • [6] A Triboelectric Nanogenerator as a Self-Powered Sensor for a Soft-Rigid Hybrid Actuator
    Chen, Jian
    Chen, Baodong
    Han, Kai
    Tang, Wei
    Wang, Zhong Lin
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (09)
  • [7] Advances in self-powered triboelectric pressure sensors
    Lei, Hao
    Chen, Yunfeng
    Gao, Zhenqiu
    Wen, Zhen
    Sun, Xuhui
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (36) : 20100 - 20130
  • [8] Self-Powered Triboelectric Nanogenerator for Security Applications
    Munirathinam, Prabavathi
    Chandrasekhar, Arunkumar
    MICROMACHINES, 2023, 14 (03)
  • [9] Triboelectric Nanogenerators for Self-Powered Wound Healing
    Xiao, Xiao
    Nashalian, Ardo
    Libanori, Alberto
    Fang, Yunsheng
    Li, Xiyao
    Chen, Jun
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (20)
  • [10] Triboelectric nanogenerator as self-powered impact sensor
    Garcia, Cristobal
    Trendafilova, Irina
    Guzman de Villoria, Roberto
    Sanchez del Rio, Jose
    INTERNATIONAL CONFERENCE ON ENGINEERING VIBRATION (ICOEV 2017), 2018, 148