Parameter Adaptive Manta Ray Foraging Optimization for Global Continuous Optimization Problems and Parameter Estimation of Solar Photovoltaic Models

被引:0
作者
Tang, Zhentao [1 ,2 ,3 ]
Wang, Kaiyu [4 ]
Yao, Yongxuan [1 ]
Zhu, Mingxin [1 ]
Zhuang, Lan [1 ]
Chen, Huiqin [1 ,2 ,3 ]
Li, Jing [1 ,2 ,3 ]
Yan, Li [1 ,2 ,3 ]
Gao, Shangce [4 ]
机构
[1] Jiangsu Agri Anim Husb Vocat Coll, Taizhou 225300, Peoples R China
[2] Jiangsu Agr Internet Things Engn Technol Res & Dev, Taizhou 225300, Peoples R China
[3] Taizhou Smart Agr Engn Res Ctr, Taizhou 225300, Peoples R China
[4] Univ Toyama, Fac Engn, Toyama 9308555, Japan
关键词
Manta ray foraging optimization; Success history; Parameter adaptation; Population diversity; Stability analysis; Photovoltaic model; Parameter estimation; PARTICLE SWARM OPTIMIZATION; ALGORITHM; IDENTIFICATION; EXTRACTION;
D O I
10.1007/s44196-025-00753-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The manta ray foraging optimization (MRFO) algorithm suffers from a fixed parameter S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S $$\end{document}, limiting its adaptability in balancing search capability and convergence speed during different optimization stages. To address this limitation, a success-history-based parameter adaptation strategy is proposed to dynamically adjust S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S $$\end{document}. Furthermore, to enhance population diversity and avoid premature convergence, a randomly selected individual from the top G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ G $$\end{document} high-quality solutions replaces the current best individual in the somersault foraging behavior. Based on these improvements, a parameter adaptive manta ray foraging optimization (PAMRFO) algorithm is developed. The experimental results demonstrate the effectiveness of PAMRFO. On the IEEE CEC2017 benchmark function set, PAMRFO achieved an average win rate of 82.39% across 29 functions compared to seven state-of-the-art algorithms. On 22 IEEE CEC2011 real-world optimization problems, PAMRFO achieved an average win rate of 55.91% compared to ten advanced algorithms. Sensitivity analysis identified optimal parameter settings, and further stability analysis revealed that PAMRFO exhibits higher success rates and computational efficiency among the four MRFO variants. Population diversity and exploration-exploitation analysis demonstrated the effectiveness of the proposed update mechanism in maintaining diversity and balancing exploration and exploitation. In solving parameter estimation problems for six multimodal solar photovoltaic models, PAMRFO outperformed other competing methods with a 100% success rate, highlighting its superior performance in the photovoltaic field. These findings validate the robustness, efficiency, and wide applicability of PAMRFO, providing advanced solutions for optimization problems in the new energy domain.
引用
收藏
页数:36
相关论文
共 81 条
  • [1] A Grunwald-Letnikov based Manta ray foraging optimizer for global optimization and image segmentation
    Abd Elaziz, Mohamed
    Yousri, Dalia
    Al-qaness, Mohammed A. A.
    AbdelAty, Amr M.
    Radwan, Ahmed G.
    Ewees, Ahmed A.
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 98
  • [2] Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer
    Abualigah, Laith
    Abd Elaziz, Mohamed
    Sumari, Putra
    Geem, Zong Woo
    Gandomi, Amir H.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 191
  • [3] Improved exponential distribution optimizer: enhancing global numerical optimization problem solving and optimizing machine learning paramseters
    Adegboye, Oluwatayomi Rereloluwa
    Feda, Afi Kekeli
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):
  • [4] Refinement of Dynamic Hunting Leadership Algorithm for Enhanced Numerical Optimization
    Adegboye, Oluwatayomi Rereloluwa
    Feda, Afi Kekeli
    Ojekemi, Opeoluwa Seun
    Agyekum, Ephraim Bonah
    Elattar, Ehab E.
    Kamel, Salah
    [J]. IEEE ACCESS, 2024, 12 : 103271 - 103298
  • [5] Gaussian Mutation Specular Reflection Learning with Local Escaping Operator Based Artificial Electric Field Algorithm and Its Engineering Application
    Adegboye, Oluwatayomi Rereloluwa
    Ulker, Ezgi Deniz
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (07):
  • [6] The exploration/exploitation tradeoff in dynamic cellular genetic algorithms
    Alba, E
    Dorronsoro, B
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2005, 9 (02) : 126 - 142
  • [7] Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm
    Allam, Dalia
    Yousri, D. A.
    Eteiba, M. B.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2016, 123 : 535 - 548
  • [8] Novel Manta Rays Foraging Optimization Algorithm Based Optimal Control for Grid-Connected PV Energy System
    Alturki, Fahd A.
    Omotoso, Hammed O.
    Al-Shamma'a, Abdullrahman A.
    Farh, Hassan M. H.
    Alsharabi, Khalil
    [J]. IEEE ACCESS, 2020, 8 : 187276 - 187290
  • [9] Parameter identification for solar cell models using harmony search-based algorithms
    Askarzadeh, Alireza
    Rezazadeh, Alireza
    [J]. SOLAR ENERGY, 2012, 86 (11) : 3241 - 3249
  • [10] Bayraktar Z., 2016, Proceedings of 9th EAI International Conference on Bio-inspired Information and Communications Technologies (BIONETICS), P124, DOI DOI 10.4108/EAI.3-12-2015.2262424