Light tuning CO/H2 composition on Ag: Unraveling CO2 mass transfer and electron-phonon coupling in plasmon-enhanced electrocatalysis

被引:0
作者
Lin, Rui [1 ]
Fan, Dong [2 ]
Berger, Luca M. [1 ]
Possmayer, Thomas [1 ]
Zhou, Yu [3 ]
Zhu, Jiexin [4 ]
Chen, Xingbao [4 ]
Luo, Wen [4 ]
Allmendinger, Lars [5 ]
Tittl, Andreas [1 ]
Menezes, Leonardo de Souza [1 ,6 ]
Maurin, Guillaume [2 ]
Yang, Shihe [3 ]
Maier, Stefan A. [7 ,8 ]
机构
[1] Ludwig Maximilians Univ Munchen, Fac Phys, Nanoinst Munich, D-80539 Munich, Germany
[2] Univ Montpellier, Inst Charles Gerhardt Montpellier, CNRS, UMR 5253,ENSCM, Pl E Bataillon, F-34090 Montpellier, France
[3] Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, Guangdong Prov Key Lab Nanomicro Mat Res, Shenzhen 518055, Peoples R China
[4] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[5] Ludwig Maximilians Univ Munchen, Fac Chem & Pharm, D-81377 Munich, Germany
[6] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil
[7] Monash Univ, Sch Phys & Astron, Clayton Campus, Melbourne, Vic 3800, Australia
[8] Imperial Coll London, Dept Phys, London SW7 2AZ, England
基金
中国国家自然科学基金;
关键词
plasmonic catalysis; photoelectrochemical CO2 reduction; CO/H2; ratio; hot electron generation; electron- phonon coupling; thermal effect; HOT-ELECTRONS; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; CARRIER; ELECTROREDUCTION; SELECTIVITY; CONVERSION; SCIENCE; SURFACE; DESIGN;
D O I
10.26599/NR.2025.94907042
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Plasmon-enhanced electrocatalysis (PEEC) is an emerging approach to mitigate CO2 emissions. The mechanisms behind CO2 adsorption and reduction at the catalyst-electrolyte interface in PEEC still need to be further explored. Herein, we employ a well-defined Ag nanostructure to elucidate these pivotal issues. By shining light with wavelengths of 625, 525, 405 nm on Ag, an adjustable CO/H2 ratio from 35 to 1 can be obtained. The reaction pathway changing under plasmonic excitation does not originate from the lowered CO2 mass transfer in the vicinity of Ag, as the electrochemical quartz crystal microbalance results unravel that a slightly elevated temperature in bulk electrolyte caused by light irradiation cannot weaken the CO2 adsorption at the Ag catalyst-electrolyte interface. Theoretical calculations reveal that optical excitation towards shorter wavelengths leads to a progressive lowered energy barrier for H2 formation together with an enhanced energy barrier for *COOH formation. Although thermodynamically suppressed, CO2 reduction can still be improved kinetically by optimizing the excitation wavelength and intensity, being accompanied with the enhanced photocurrent. Transient absorption spectroscopy results further correlate the higher photocurrent with a prolonged electron-phonon coupling time, verifying that the improvement of CO2 reduction kinetics in PEEC can be realized by hot electron harnessing.
引用
收藏
页数:13
相关论文
共 83 条
  • [1] Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I. B., Norskov J. K., Jaramillo T. J., Combining theory and experiment in electrocatalysis: Insights into materials design, Science, 355, (2017)
  • [2] Chen S. H., Ye C. L., Wang Z. W., Li P., Jiang W. J., Zhuang Z. C., Zhu J. X., Zheng X. B., Zaman S., Ou H. H., Et al., Selective CO<sub>2</sub> reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts, Angew. Chem., Int. Ed, 62, (2023)
  • [3] O'Brien C. P., Miao R. K., Zeraati A. S., Lee G., Sargent E. H., Sinton D., CO<sub>2</sub> electrolyzers, Chem. Rev, 124, pp. 3648-3693, (2024)
  • [4] Wang L. G., Wu J. B., Wang S. W., Liu H., Wang Y., Wang D. S., The reformation of catalyst: From a trial-and-error synthesis to rational design, Nano Res, 17, pp. 3261-3301, (2024)
  • [5] Gao D. F., Aran-Ais R. M., Jeon H. S., Cuenya B. R., Rational catalyst and electrolyte design for CO<sub>2</sub> electroreduction towards multicarbon products, Nat. Catal, 2, pp. 198-210, (2019)
  • [6] Wang J. L., Lai T. Y., Lin H. T., Kuo T. R., Chen H. C., Tseng C. S., Tung C. W., Chien C. Y., Chen H. M., Light-induced dynamic activation of copper/silicon interface for highly selective carbon dioxide reduction, Angew. Chem., Int. Ed, 63, (2024)
  • [7] Jiao J. Q., Lin R., Liu S. J., Cheong W. C., Zhang C., Chen Z., Pan Y., Tang J. G., Wu K. L., Hung S. F., Et al., Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO<sub>2</sub>, Nat. Chem, 11, pp. 222-228, (2019)
  • [8] Lin R., Ma X. L., Cheong W. C., Zhang C., Zhu W., Pei J. J., Zhang K. Y., Wang B., Liang S. Y., Liu Y. X., Et al., PdAg bimetallic electrocatalyst for highly selective reduction of CO<sub>2</sub> with low COOH* formation energy and facile CO desorption, Nano Res, 12, pp. 2866-2871, (2019)
  • [9] Pan Y., Lin R., Chen Y. J., Liu S. J., Zhu W., Cao X., Chen W. X., Wu K. L., Cheong W. C., Wang Y., Et al., Design of single-atom Co–N<sub>5</sub> catalytic site: A robust electrocatalyst for CO<sub>2</sub> reduction with nearly 100% CO selectivity and remarkable stability, J. Am. Chem. Soc, 140, pp. 4218-4221, (2018)
  • [10] Kim D., Resasco J., Yu Y., Asiri A. M., Yang P. D., Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles, Nat. Commun, 5, (2014)