Deep learning-based malaria parasite detection: convolutional neural networks model for accurate species identification of Plasmodium falciparum and Plasmodium vivax

被引:2
作者
Ramos-Briceno, Diego A. [1 ,2 ,3 ]
Flammia-D'Aleo, Alessandro [1 ,2 ]
Fernandez-Lopez, Gerardo [4 ]
Carrion-Nessi, Fhabian S. [2 ,3 ,5 ]
Forero-Pena, David A. [2 ,3 ,6 ]
机构
[1] Univ Metropolitana Caracas, Fac Engn, Sch Syst Engn, Caracas, Venezuela
[2] Biomed Res & Therapeut Vaccines Inst, Ciudad Bolivar, Venezuela
[3] Univ Cent Venezuela, Luis Razetti Sch Med, Caracas, Venezuela
[4] Univ Simon Bolivar, Fac Engn, Dept Elect & Circuits, Caracas, Venezuela
[5] Inst Venezolano Invest Cient, Lab Pathophysiol, Ctr Med Expt Miguel Layrisse, Immunogenet Sect, Altos De Pipe, Venezuela
[6] Hosp Univ Caracas, Dept Infect Dis, Caracas, Venezuela
关键词
Malaria; <italic>Plasmodium</italic> infection; Artificial intelligence; Deep learning; Neural network model; Medical image processing;
D O I
10.1038/s41598-025-87979-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate malaria diagnosis with precise identification of Plasmodium species is crucial for an effective treatment. While microscopy is still the gold standard in malaria diagnosis, it relies heavily on trained personnel. Artificial intelligence (AI) advances, particularly convolutional neural networks (CNNs), have significantly improved diagnostic capabilities and accuracy by enabling the automated analysis of medical images. Previous models efficiently detected malaria parasites in red blood cells but had difficulty differentiating between species. We propose a CNN-based model for classifying cells infected by P. falciparum, P. vivax, and uninfected white blood cells from thick blood smears. Our best-performing model utilizes a seven-channel input and correctly predicted 12,876 out of 12,954 cases. We also generated a cross-validation confusion matrix that showed the results of five iterations, achieving 63,654 out of 64,126 true predictions. The model's accuracy reached 99.51%, a precision of 99.26%, a recall of 99.26%, a specificity of 99.63%, an F1 score of 99.26%, and a loss of 2.3%. We are now developing a system based on real-world quality images to create a comprehensive detection tool for remote regions where trained microscopists are unavailable.
引用
收藏
页数:11
相关论文
共 45 条
[1]   Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models [J].
Abdurahman, Fetulhak ;
Fante, Kinde Anlay ;
Aliy, Mohammed .
BMC BIOINFORMATICS, 2021, 22 (01)
[2]  
Alpaydin E., 2020, INTRO MACHINE LEARNI
[3]  
[Anonymous], 2024, World malaria report 2024: addressing inequity in the global malaria response
[4]  
Barracloug PA, 2024, INT J ADV COMPUT SC, V15, P920
[5]  
Berrar D., 2019, Encyclopedia of Bioinformatics and Computational Biology, Volume, VI, P542, DOI DOI 10.1016/B978-0-12-809633-8.20349-X
[6]   Intelligent Malaria Detection and Species Classification: A Case of Rwanda [J].
Bogale, Yamlak ;
Mukamakuza, Carine Pierette ;
Tuyishimire, Emmanuel .
PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2024, VOL 6, 2024, 1002 :507-520
[7]  
Cavalin P, 2019, LECT NOTES COMPUT SC, V11401, P271, DOI 10.1007/978-3-030-13469-3_32
[8]  
CCSS, 2020, Protocolo Para La atencion De La Persona con Malaria segun Nivel De atencion
[9]  
CDC, 2024, Malaria diagnostic tests
[10]  
CDC, 2024, Malaria