CONVERGENT FINITE DIFFERENCE SCHEMES FOR STOCHASTIC TRANSPORT EQUATIONS

被引:0
作者
Fjordholm, Ulrik S. [1 ]
Karlsen, Kenneth H. [1 ]
Pang, Peter H. C. [1 ]
机构
[1] Univ Oslo, Dept Math, Oslo, Norway
关键词
stochastic transport equation; gradient noise; finite difference scheme; regularization by noise; stability; convergence; DISCONTINUOUS GALERKIN METHOD; SCALAR CONSERVATION-LAWS; VOLUME SCHEME; RENORMALIZED SOLUTIONS; APPROXIMATIONS;
D O I
10.1137/23M159946X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present difference schemes for stochastic transport equations with low-regularity velocity fields. We establish L2 stability and convergence of the difference approximations under conditions that are less strict than those required for deterministic transport equations. The L2 estimate, crucial for the analysis, is obtained through a discrete duality argument and a comprehensive examination of a class of backward parabolic difference schemes.
引用
收藏
页码:149 / 192
页数:44
相关论文
共 50 条
[41]   Finite Difference Schemes for the Cauchy-Navier Equations of Elasticity with Variable Coefficients [J].
Bialecki, Bernard ;
Karageorghis, Andreas .
JOURNAL OF SCIENTIFIC COMPUTING, 2015, 62 (01) :78-121
[42]   High-order ADI finite difference schemes for parabolic equations in the combination technique with application in finance [J].
Hendricks, Christian ;
Heuer, Christof ;
Ehrhardt, Matthias ;
Guenther, Michael .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 316 :175-194
[43]   Finite difference schemes for time-fractional Schrodinger equations via fractional linear multistep method [J].
Hicdurmaz, Betul .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (08) :1561-1573
[44]   Dispersion analysis of finite difference and discontinuous Galerkin schemes for Maxwell's equations in linear Lorentz media [J].
Jiang, Yan ;
Sakkaplangkul, Puttha ;
Bokil, Vrushali A. ;
Cheng, Yingda ;
Li, Fengyan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 394 :100-135
[45]   Stability and Convergence Analysis of Finite Difference Schemes for Time-Dependent Space-Fractional Diffusion Equations with Variable Diffusion Coefficients [J].
Lin, Xue-lei ;
Ng, Michael K. ;
Sun, Hai-Wei .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (02) :1102-1127
[46]   Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations [J].
Gao, Guang-hua ;
Sun, Zhi-zhong .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) :591-615
[47]   Convergent difference schemes for the Hunter-Saxton equation [J].
Holden, H. ;
Karlsen, K. H. ;
Risebro, N. H. .
MATHEMATICS OF COMPUTATION, 2007, 76 (258) :699-744
[48]   DIFFERENCE SCHEMES FOR PARTIAL DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER [J].
Bazzaev, A. K. ;
Tsopanov, I. D. .
UFA MATHEMATICAL JOURNAL, 2019, 11 (02) :19-33
[49]   A Class of Stable and Conservative Finite Difference Schemes for the Cahn-Hilliard Equation [J].
Wang, Ting-chun ;
Zhao, Li-mei ;
Guo, Bo-ling .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (04) :863-878
[50]   Finite-difference schemes for parabolic problems on graphs [J].
Čiegis R. ;
Tumanova N. .
Lithuanian Mathematical Journal, 2010, 50 (2) :164-178