CONVERGENT FINITE DIFFERENCE SCHEMES FOR STOCHASTIC TRANSPORT EQUATIONS

被引:0
作者
Fjordholm, Ulrik S. [1 ]
Karlsen, Kenneth H. [1 ]
Pang, Peter H. C. [1 ]
机构
[1] Univ Oslo, Dept Math, Oslo, Norway
关键词
stochastic transport equation; gradient noise; finite difference scheme; regularization by noise; stability; convergence; DISCONTINUOUS GALERKIN METHOD; SCALAR CONSERVATION-LAWS; VOLUME SCHEME; RENORMALIZED SOLUTIONS; APPROXIMATIONS;
D O I
10.1137/23M159946X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present difference schemes for stochastic transport equations with low-regularity velocity fields. We establish L2 stability and convergence of the difference approximations under conditions that are less strict than those required for deterministic transport equations. The L2 estimate, crucial for the analysis, is obtained through a discrete duality argument and a comprehensive examination of a class of backward parabolic difference schemes.
引用
收藏
页码:149 / 192
页数:44
相关论文
共 50 条
[31]   UNIFORM DISCRETE SOBOLEV ESTIMATES OF SOLUTIONS TO FINITE DIFFERENCE SCHEMES FOR SINGULAR LIMITS OF NONLINEAR PDES [J].
Mandel, Liat Even-Dar ;
Schochet, Steven .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (02) :727-757
[32]   Finite difference schemes for the two-dimensional multi-term time-fractional diffusion equations with variable coefficients [J].
Cui, Mingrong .
COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (05)
[33]   On the convergence of difference schemes for the equations of ocean dynamics [J].
Drutsa, A. V. ;
Kobelkov, G. M. .
SBORNIK MATHEMATICS, 2012, 203 (08) :1091-1111
[34]   Centered difference schemes for nonlinear hyperbolic equations [J].
Chen, GQ ;
Toro, EF .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2004, 1 (03) :531-566
[35]   A convergent finite difference scheme for the Ostrovsky-Hunter equation on a bounded domain [J].
Coclite, G. M. ;
Ridder, J. ;
Risebro, N. H. .
BIT NUMERICAL MATHEMATICS, 2017, 57 (01) :93-122
[36]   On nonstandard finite difference schemes for initial value problems in ordinary differential equations [J].
Ibijola, E. A. ;
Lubuma, J. M. S. ;
Ade-Ibijola, O. A. .
INTERNATIONAL JOURNAL OF THE PHYSICAL SCIENCES, 2008, 3 (02) :59-64
[37]   A family of conservative finite difference schemes for the dynamical von Karman plate equations [J].
Bilbao, Stefan .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (01) :193-216
[38]   New Finite Difference Hermite WENO Schemes for Hamilton-Jacobi Equations [J].
Zhu, Jun ;
Zheng, Feng ;
Qiu, Jianxian .
JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (01)
[39]   Quasi-Compact Finite Difference Schemes for Space Fractional Diffusion Equations [J].
Zhou, Han ;
Tian, WenYi ;
Deng, Weihua .
JOURNAL OF SCIENTIFIC COMPUTING, 2013, 56 (01) :45-66
[40]   HIGH ORDER FINITE DIFFERENCE WENO SCHEMES FOR NONLINEAR DEGENERATE PARABOLIC EQUATIONS [J].
Liu, Yuanyuan ;
Shu, Chi-Wang ;
Zhang, Mengping .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (02) :939-965