CONVERGENT FINITE DIFFERENCE SCHEMES FOR STOCHASTIC TRANSPORT EQUATIONS

被引:0
|
作者
Fjordholm, Ulrik S. [1 ]
Karlsen, Kenneth H. [1 ]
Pang, Peter H. C. [1 ]
机构
[1] Univ Oslo, Dept Math, Oslo, Norway
关键词
stochastic transport equation; gradient noise; finite difference scheme; regularization by noise; stability; convergence; DISCONTINUOUS GALERKIN METHOD; SCALAR CONSERVATION-LAWS; VOLUME SCHEME; RENORMALIZED SOLUTIONS; APPROXIMATIONS;
D O I
10.1137/23M159946X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present difference schemes for stochastic transport equations with low-regularity velocity fields. We establish L2 stability and convergence of the difference approximations under conditions that are less strict than those required for deterministic transport equations. The L2 estimate, crucial for the analysis, is obtained through a discrete duality argument and a comprehensive examination of a class of backward parabolic difference schemes.
引用
收藏
页码:149 / 192
页数:44
相关论文
共 50 条
  • [1] Numerics of stochastic parabolic differential equations with stable finite difference schemes
    Soheili, A. R.
    Arezoomandan, M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2012, 36 (A1): : 61 - 70
  • [2] Finite Difference Schemes for Stochastic Partial Differential Equations in Sobolev Spaces
    Gerencser, Mate
    Gyoengy, Istvan
    APPLIED MATHEMATICS AND OPTIMIZATION, 2015, 72 (01) : 77 - 100
  • [3] APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
    Soheili, A. R.
    Niasar, M. B.
    Arezoomandan, M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2011, 37 (02): : 61 - 83
  • [4] Stable and Convergent Finite Difference Schemes on NonuniformTime Meshes for Distributed-Order Diffusion Equations
    Morgado, M. Luisa
    Rebelo, Magda
    Ferras, Luis L.
    MATHEMATICS, 2021, 9 (16)
  • [5] The convergence and stability of splitting finite-difference schemes for nonlinear evolutionary equations
    Radziunas M.
    Ivanauskas F.
    Lithuanian Mathematical Journal, 2005, 45 (3) : 334 - 352
  • [6] A convergent finite difference method for optimal transport on the sphere
    Hamfeldt, Brittany Froese
    Turnquist, Axel G. R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 445
  • [7] Multistep finite difference schemes for the variable coefficient delay parabolic equations
    Zhang, Qifeng
    Li, Dongfang
    Zhang, Chengjian
    Xu, Dinghua
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (06) : 745 - 765
  • [8] Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence
    Gao, Guang-Hua
    Sun, Hai-Wei
    Sun, Zhi-Zhong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 : 510 - 528
  • [9] Some temporal second order difference schemes for fractional wave equations
    Sun, Hong
    Sun, Zhi-Zhong
    Gao, Guang-Hua
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (03) : 970 - 1001
  • [10] Fourth order finite difference schemes for time-space fractional sub-diffusion equations
    Pang, Hong-Kui
    Sun, Hai-Wei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (06) : 1287 - 1302