Causal association between metabolic syndrome and ovarian dysfunction: a bidirectional two-sample mendelian randomization

被引:0
作者
He, Ying [1 ]
Wei, Yanling [2 ]
Liang, Haixia [1 ]
Wan, Yi [3 ]
Zhang, Ying [1 ]
Zhang, Jianfang [2 ]
机构
[1] Air Force Med Univ, Xijing Hosp Dept 986, Dept Obstet & Gynecol, 6 Jianshe West Rd, Xian 710054, Shaanxi, Peoples R China
[2] Air Force Med Univ, Xijing Hosp, Dept Obstet & Gynecol, 15 Changle West Rd, Xian 710033, Shaanxi, Peoples R China
[3] Air Force Med Univ, Dept Hlth Serv, Xian 710032, Shaanxi, Peoples R China
关键词
Metabolic syndrome; Ovarian dysfunction; Mendelian randomization; Causal Association; Genetic analysis; INSTRUMENTS; BIAS;
D O I
10.1186/s13048-025-01614-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundThe relationship between Metabolic Syndrome (MetS) and ovarian dysfunction has been widely reported in observational studies, yet it remains not fully understood. This study employs genetic prediction methods and utilizes summary data from genome-wide association studies (GWAS) to investigate this causal link. MethodsWe employed a bidirectional two-sample Mendelian Randomization (MR) analysis utilizing MetS and ovarian dysfunction summary data from GWAS. Inverse variance weighted (IVW) was employed as the primary MR method, supplemented by Weighted Median, Weighted Mode, and MR-Egger methods. The robustness of the results was further assessed through sensitivity analyses including MR-Egger regression, MR-PRESSO, Cochran's Q, and leave-one-out test. ResultsOur MR analysis identified a causal relationship between genetically determined insulin resistance (OR = 0.26, 95% CI: 0.08-0.89, P = 0.03), waist circumference (OR = 2.14, 95% CI: 1.45-3.15, P < 0.001), BMI (OR = 2.1, 95% CI: 1.56-2.83, P < 0.001) and ovarian dysfunction. Conversely, reverse MR analysis confirmed causal effects of ovarian dysfunction on metabolic syndrome (OR = 0.98, 95% CI: 0.97-0.99, P < 0.001) and waist circumference (OR = 0.99, 95% CI: 0.98-0.99, P = 0.02). The results of MR-Egger regression test indicated that the whole analysis was not affected by horizontal pleiotropy. Additionally, the MR-PRESSO test identified outliers in SNPs, but after removal of outliers, results remained unchanged. ConclusionThis study reveals a bidirectional causal connection between metabolic syndrome and ovarian dysfunction via genetic prediction methods. These findings are crucial for advancing our understanding of the interactions between these conditions and developing strategies for prevention and treatment.
引用
收藏
页数:10
相关论文
共 34 条
[1]  
[Anonymous], 2022, NAT REV METHOD PRIME, V2, DOI [10.1038/s43586-022-00099-6, 10.1038/s43586-021-00092-5]
[2]   Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator [J].
Bowden, Jack ;
Smith, George Davey ;
Haycock, Philip C. ;
Burgess, Stephen .
GENETIC EPIDEMIOLOGY, 2016, 40 (04) :304-314
[3]   Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression [J].
Bowden, Jack ;
Smith, George Davey ;
Burgess, Stephen .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (02) :512-525
[4]   Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data [J].
Burgess, Stephen ;
Butterworth, Adam ;
Thompson, Simon G. .
GENETIC EPIDEMIOLOGY, 2013, 37 (07) :658-665
[5]   Avoiding bias from weak instruments in Mendelian randomization studies [J].
Burgess, Stephen ;
Thompson, Simon G. .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2011, 40 (03) :755-764
[6]   Metabolic differences in women with premature ovarian insufficiency: a systematic review and meta-analysis [J].
Cai, Wang-Yu ;
Luo, Xi ;
Wu, Wei ;
Song, Jianyuan ;
Xie, Ning-Ning ;
Duan, Cuicui ;
Wu, Xiao-Ke ;
Xu, Jian .
JOURNAL OF OVARIAN RESEARCH, 2022, 15 (01)
[7]   Second-generation PLINK: rising to the challenge of larger and richer datasets [J].
Chang, Christopher C. ;
Chow, Carson C. ;
Tellier, Laurent C. A. M. ;
Vattikuti, Shashaank ;
Purcell, Shaun M. ;
Lee, James J. .
GIGASCIENCE, 2015, 4
[8]   The trans-ancestral genomic architecture of glycemic traits [J].
Chen, Ji ;
Spracklen, Cassandra N. ;
Marenne, Gaelle ;
Varshney, Arushi ;
Corbin, Laura J. ;
Luan, Jian'an ;
Willems, Sara M. ;
Wu, Ying ;
Zhang, Xiaoshuai ;
Horikoshi, Momoko ;
Boutin, Thibaud S. ;
Magi, Reedik ;
Waage, Johannes ;
Li-Gao, Ruifang ;
Chan, Kei Hang Katie ;
Yao, Jie ;
Anasanti, Mila D. ;
Chu, Audrey Y. ;
Claringbould, Annique ;
Heikkinen, Jani ;
Hong, Jaeyoung ;
Hottenga, Jouke-Jan ;
Huo, Shaofeng ;
Kaakinen, Marika A. ;
Louie, Tin ;
Maerz, Winfried ;
Moreno-Macias, Hortensia ;
Ndungu, Anne ;
Nelson, Sarah C. ;
Nolte, Ilja M. ;
North, Kari E. ;
Raulerson, Chelsea K. ;
Ray, Debashree ;
Rohde, Rebecca ;
Rybin, Denis ;
Schurmann, Claudia ;
Sim, Xueling ;
Southam, Lorraine ;
Stewart, Isobel D. ;
Wang, Carol A. ;
Wang, Yujie ;
Wu, Peitao ;
Zhang, Weihua ;
Ahluwalia, Tarunveer S. ;
Appel, Emil V. R. ;
Bielak, Lawrence F. ;
Brody, Jennifer A. ;
Burtt, Noel P. ;
Cabrera, Claudia P. ;
Cade, Brian E. .
NATURE GENETICS, 2021, 53 (06) :840-+
[9]   Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome [J].
Del Greco, Fabiola M. ;
Minelli, Cosetta ;
Sheehanc, Nuala A. ;
Thompsonc, John R. .
STATISTICS IN MEDICINE, 2015, 34 (21) :2926-2940
[10]   Diminished ovarian reserve in the United States assisted reproductive technology population: diagnostic trends among 181,536 cycles from the Society for Assisted Reproductive Technology Clinic Outcomes Reporting System [J].
Devine, Kate ;
Mumford, Sunni L. ;
Wu, Mae ;
DeCherney, Alan H. ;
Hill, Micah J. ;
Propst, Anthony .
FERTILITY AND STERILITY, 2015, 104 (03) :612-+