Analysis of the Characteristics of the Linear and Inertia Friction Welding Processes of Nickel Alloys

被引:0
作者
Medvedev, A. Yu. [1 ]
Galimov, V. R. [1 ]
Pautov, A. N. [1 ]
Miniakhmetov, A. A. [2 ]
Fozilov, T. T. [2 ,3 ]
机构
[1] Ufa Univ Sci & Technol, Ufa 450076, Russia
[2] Res Inst Technol & Org Engine Prod, Moscow 105118, Russia
[3] Moscow Aviat Inst, Moscow 125993, Russia
基金
俄罗斯科学基金会;
关键词
linear friction welding; inertia friction welding; high-temperature nickel alloys; field simulation of the friction welding temperature;
D O I
10.1134/S1052618824701851
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The processes of inertia and linear friction welding of heat-resistant nickel alloys VZh-175, EP-742, and EP-741 are discussed. The programs developed for analyzing the characteristics for linear and inertia friction welding are analyzed. The developed finite-difference models of the temperature field are also described, the main features of which are the movement of the friction boundary, which simulates the process of upsetting. The analysis of the kinematic, force, energy, and temperature characteristics of linear and rotary friction welding cycles is carried out. Comparison of linear and rotary welding cycles by 14 characteristics showed that the most informative in terms of data transfer are the upsetting rate and the upset value, the temperature at the joint, the specific thermal power, work on upsetting the unit volume, and the coefficient of friction.
引用
收藏
页码:182 / 189
页数:8
相关论文
共 15 条
[1]   A computationally efficient thermal modelling approach of the linear friction welding process [J].
Buhr, Clement ;
Colegrove, Paul A. ;
McAndrew, Anthony R. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2018, 252 :849-858
[2]  
Gatiatullin I. M., 2021, IOP Conference Series: Materials Science and Engineering, V1155, DOI 10.1088/1757-899X/1155/1/012040
[3]   Precipitation of γ' during cooling of nickel-base superalloy Haynes 282 [J].
Joseph, Ceena ;
Thuvander, Mattias ;
Persson, Christer ;
Hornqvist Colliander, Magnus .
PHILOSOPHICAL MAGAZINE LETTERS, 2021, 101 (01) :30-39
[4]   Numerical simulation of linear friction welding of titanium alloy: Effects of processing parameters [J].
Li, Wen-Ya ;
Ma, Tiejun ;
Li, Jinglong .
MATERIALS & DESIGN, 2010, 31 (03) :1497-1507
[5]   Linear and rotary friction welding review [J].
Li, Wenya ;
Vairis, Achilles ;
Preuss, Michael ;
Ma, Tiejun .
INTERNATIONAL MATERIALS REVIEWS, 2016, 61 (02) :71-100
[6]   Friction welding - critical assessment of literature [J].
Maalekian, M. .
SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2007, 12 (08) :738-759
[7]   A literature review of Ti-6Al-4V linear friction welding [J].
McAndrew, Anthony R. ;
Colegrove, Paul A. ;
Buhr, Clement ;
Flipo, Bertrand C. D. ;
Vairis, Achilleas .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :225-257
[8]   3D modelling of Ti-6Al-4V linear friction welds [J].
McAndrew, Anthony R. ;
Colegrove, Paul A. ;
Flipo, Bertrand C. D. ;
Buhr, Clement .
SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2017, 22 (06) :496-504
[9]   Energy and Force Analysis of Ti-6Al-4V Linear Friction Welds for Computational Modeling Input and Validation Data [J].
McAndrew, Anthony R. ;
Colegrove, Paul A. ;
Addison, Adrian C. ;
Flipo, Bertrand C. D. ;
Russell, Michael J. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2014, 45A (13) :6118-6128
[10]  
Medvedev A. U., 2020, Solid State Phenomena, V303, P175, DOI 10.4028/www.scientific.net/SSP.303.175