SurfDock is a surface-informed diffusion generative model for reliable and accurate protein-ligand complex prediction

被引:13
作者
Cao, Duanhua [1 ,2 ]
Chen, Mingan [2 ,3 ,4 ]
Zhang, Runze [2 ,5 ]
Wang, Zhaokun [2 ,5 ]
Huang, Manlin [2 ,6 ]
Yu, Jie [2 ,4 ,7 ]
Jiang, Xinyu [2 ,5 ]
Fan, Zhehuan [2 ,5 ]
Zhang, Wei [2 ,5 ]
Zhou, Hao [8 ]
Li, Xutong [2 ]
Fu, Zunyun [2 ]
Zhang, Sulin [2 ,5 ]
Zheng, Mingyue [1 ,2 ,5 ]
机构
[1] Zhejiang Univ, Innovat Inst Artificial Intelligence Med, Coll Pharmaceut Sci, Hangzhou, Zhejiang, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Mat Med, Drug Discovery & Design Ctr, State Key Lab Drug Res, Shanghai, Peoples R China
[3] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai, Peoples R China
[4] Lingang Lab, Shanghai, Peoples R China
[5] Univ Chinese Acad Sci, Beijing, Peoples R China
[6] Nanchang Univ, Nanchang, Peoples R China
[7] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
[8] Tsinghua Univ, Inst AI Ind Res AIR, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
DEEP LEARNING-MODEL; SIDE-CHAIN; DOCKING; EFFICIENT; BENCHMARKING; LIBRARY;
D O I
10.1038/s41592-024-02516-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Accurately predicting protein-ligand interactions is crucial for understanding cellular processes. We introduce SurfDock, a deep-learning method that addresses this challenge by integrating protein sequence, three-dimensional structural graphs and surface-level features into an equivariant architecture. SurfDock employs a generative diffusion model on a non-Euclidean manifold, optimizing molecular translations, rotations and torsions to generate reliable binding poses. Our extensive evaluations across various benchmarks demonstrate SurfDock's superiority over existing methods in docking success rates and adherence to physical constraints. It also exhibits remarkable generalizability to unseen proteins and predicted apo structures, while achieving state-of-the-art performance in virtual screening tasks. In a real-world application, SurfDock identified seven novel hit molecules in a virtual screening project targeting aldehyde dehydrogenase 1B1, a key enzyme in cellular metabolism. This showcases SurfDock's ability to elucidate molecular mechanisms underlying cellular processes. These results highlight SurfDock's potential as a transformative tool in structural biology, offering enhanced accuracy, physical plausibility and practical applicability in understanding protein-ligand interactions. SurfDock is a method for predicting protein-ligand complex structures by leveraging multimodal protein information and generative diffusion frameworks. Its results can be generalized to unseen proteins and real-world settings.
引用
收藏
页码:310 / 322
页数:24
相关论文
共 91 条
[1]   Accurate structure prediction of biomolecular interactions with AlphaFold 3 [J].
Abramson, Josh ;
Adler, Jonas ;
Dunger, Jack ;
Evans, Richard ;
Green, Tim ;
Pritzel, Alexander ;
Ronneberger, Olaf ;
Willmore, Lindsay ;
Ballard, Andrew J. ;
Bambrick, Joshua ;
Bodenstein, Sebastian W. ;
Evans, David A. ;
Hung, Chia-Chun ;
O'Neill, Michael ;
Reiman, David ;
Tunyasuvunakool, Kathryn ;
Wu, Zachary ;
Zemgulyte, Akvile ;
Arvaniti, Eirini ;
Beattie, Charles ;
Bertolli, Ottavia ;
Bridgland, Alex ;
Cherepanov, Alexey ;
Congreve, Miles ;
Cowen-Rivers, Alexander I. ;
Cowie, Andrew ;
Figurnov, Michael ;
Fuchs, Fabian B. ;
Gladman, Hannah ;
Jain, Rishub ;
Khan, Yousuf A. ;
Low, Caroline M. R. ;
Perlin, Kuba ;
Potapenko, Anna ;
Savy, Pascal ;
Singh, Sukhdeep ;
Stecula, Adrian ;
Thillaisundaram, Ashok ;
Tong, Catherine ;
Yakneen, Sergei ;
Zhong, Ellen D. ;
Zielinski, Michal ;
Zidek, Augustin ;
Bapst, Victor ;
Kohli, Pushmeet ;
Jaderberg, Max ;
Hassabis, Demis ;
Jumper, John M. .
NATURE, 2024, 630 (8016) :493-500
[2]   CACHE (Critical Assessment of Computational Hit-finding Experiments): A public-private partnership benchmarking initiative to enable the development of computational methods for hit-finding [J].
Ackloo, Suzanne ;
Al-awar, Rima ;
Amaro, Rommie E. ;
Arrowsmith, Cheryl H. ;
Azevedo, Hatylas ;
Batey, Robert A. ;
Bengio, Yoshua ;
Betz, Ulrich A. K. ;
Bologa, Cristian G. ;
Chodera, John D. ;
Cornell, Wendy D. ;
Dunham, Ian ;
Ecker, Gerhard F. ;
Edfeldt, Kristina ;
Edwards, Aled M. ;
Gilson, Michael K. ;
Gordijo, Claudia R. ;
Hessler, Gerhard ;
Hillisch, Alexander ;
Hogner, Anders ;
Irwin, John J. ;
Jansen, Johanna M. ;
Kuhn, Daniel ;
Leach, Andrew R. ;
Lee, Alpha A. ;
Lessel, Uta ;
Morgan, Maxwell R. ;
Moult, John ;
Muegge, Ingo ;
Oprea, Tudor, I ;
Perry, Benjamin G. ;
Riley, Patrick ;
Rousseaux, Sophie A. L. ;
Saikatendu, Kumar Singh ;
Santhakumar, Vijayaratnam ;
Schapira, Matthieu ;
Scholten, Cora ;
Todd, Matthew H. ;
Vedadi, Masoud ;
Volkamer, Andrea ;
Willson, Timothy M. .
NATURE REVIEWS CHEMISTRY, 2022, 6 (04) :287-295
[3]   Machine learning classification can reduce false positives in structure-based virtual screening [J].
Adeshina, Yusuf O. ;
Deeds, Eric J. ;
Karanicolas, John .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (31) :18477-18488
[4]   Fast, accurate, and reliable molecular docking with QuickVina 2 [J].
Alhossary, Amr ;
Handoko, Stephanus Daniel ;
Mu, Yuguang ;
Kwoh, Chee-Keong .
BIOINFORMATICS, 2015, 31 (13) :2214-2216
[5]   Geometric deep learning on molecular representations [J].
Atz, Kenneth ;
Grisoni, Francesca ;
Schneider, Gisbert .
NATURE MACHINE INTELLIGENCE, 2021, 3 (12) :1023-1032
[6]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[7]  
Batzner S, 2022, NAT COMMUN, V13, DOI [10.1038/s41467-022-29939-5, 10.1212/12121]
[8]  
Bauer MR, 2013, J CHEM INF MODEL, V53, P1447, DOI [10.1021/ci400115bl, 10.1021/ci400115b]
[9]   Getting the chemistry right: protonation, tautomers and the importance of H atoms in biological chemistry [J].
Bax, Ben ;
Chung, Chun-Wa ;
Edge, Colin .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2017, 73 :131-140
[10]   A practical guide to large-scale docking [J].
Bender, Brian J. ;
Gahbauer, Stefan ;
Luttens, Andreas ;
Lyu, Jiankun ;
Webb, Chase M. ;
Stein, Reed M. ;
Fink, Elissa A. ;
Balius, Trent E. ;
Carlsson, Jens ;
Irwin, John J. ;
Shoichet, Brian K. .
NATURE PROTOCOLS, 2021, 16 (10) :4799-4832