Fine mapping and candidate gene analysis of the major QTL qSW-A03 for seed weight in Brassica napus

被引:0
|
作者
Meng, Jiangyu [1 ,2 ,3 ]
Hu, Dingxue [1 ,3 ]
Wang, Bin [1 ,2 ,3 ]
Zhu, Yuelin [1 ,2 ,3 ]
Lu, Chunyan [1 ,3 ]
Deng, Yan [1 ,2 ,3 ]
Cai, Huiying [1 ,2 ,3 ]
Wang, Baohua [4 ]
He, Yajun [1 ,2 ,3 ]
Qian, Wei [1 ,2 ,3 ]
机构
[1] Southwest Univ, Acad Agr Sci, Chongqing 400715, Peoples R China
[2] Southwest Univ, Coll Agron & Biotechnol, Integrat Sci Ctr Germplasm Creat Western China Cho, Chongqing 400715, Peoples R China
[3] Minist Educ, Engn Res Ctr South Upland Agr, Chongqing 400715, Peoples R China
[4] Nantong Univ, Sch Life Sci, Nantong 226019, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
QUANTITATIVE TRAIT LOCI; YIELD-RELATED TRAITS; COMPLEX TRAITS; COEXPRESSION ANALYSIS; ARABIDOPSIS; IDENTIFICATION; RAPESEED; SIZE; TRANSCRIPTION; EXPRESSION;
D O I
10.1007/s00122-025-04866-3
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Seed weight is a determining factor for improving rapeseed productivity. In the present study, a high-density genetic map was constructed via genome resequencing in an RIL population derived from a cross of two rapeseed varieties, ZS11 and DL704, with great differences in thousand-seed weight (TSW). A total of 1,306 bins involving 1,261,526 markers were used to construct the bin map. On the basis of the genetic map, QTL mapping for seed weight was performed. In total, 15 QTLs associated with TSW were detected. A major and stable QTL, qSW-A03, was mapped to a 2.8 cM interval on chromosome A03. Fine mapping delimited the qSW-A03 locus into a 59-kb region, and 11 genes within this region were predicted. By employing a combination of gene variation, gene expression difference and gene coexpression network analysis of seed weight, BnaDUF1666 was identified as a promising candidate gene. This study provides useful information for the genetic dissection of seed weight and promotes the molecular breeding of high-yield rapeseed.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Fine mapping and candidate gene analysis of a major QTL for oil content in the seed of Brassica napus
    Qing Zhao
    Jian Wu
    Lei Lan
    Muhammad Shahid
    Muhammad Uzair Qasim
    Kaidi Yu
    Chunyu Zhang
    Chuchuan Fan
    Yongming Zhou
    Theoretical and Applied Genetics, 2023, 136
  • [2] Fine mapping and candidate gene analysis of a major QTL for oil content in the seed of Brassica napus
    Zhao, Qing
    Wu, Jian
    Lan, Lei
    Shahid, Muhammad
    Qasim, Muhammad Uzair
    Yu, Kaidi
    Zhang, Chunyu
    Fan, Chuchuan
    Zhou, Yongming
    THEORETICAL AND APPLIED GENETICS, 2023, 136 (12)
  • [3] Detection of new candidate genes controlling seed weight by integrating gene coexpression analysis and QTL mapping in Brassica napus L.
    Hongli Dong
    Lei Yang
    Yilin Liu
    Guifu Tian
    Huan Tang
    Shuangshuang Xin
    Yixin Cui
    Qing Xiong
    Huafang Wan
    Zhi Liu
    Christian Jung
    Wei Qian
    The Crop Journal, 2023, 11 (03) : 842 - 851
  • [4] Detection of new candidate genes controlling seed weight by integrating gene coexpression analysis and QTL mapping in Brassica napus L.
    Dong, Hongli
    Yang, Lei
    Liu, Yilin
    Tian, Guifu
    Tang, Huan
    Xin, Shuangshuang
    Cui, Yixin
    Xiong, Qing
    Wan, Huafang
    Liu, Zhi
    Jung, Christian
    Qian, Wei
    CROP JOURNAL, 2023, 11 (03): : 842 - 851
  • [5] Fine mapping and candidate gene analysis of a seed glucosinolate content QTL, qGSL-C2, in rapeseed (Brassica napus L.)
    Liu, Ying
    Zhou, Xianming
    Yan, Min
    Wang, Pengfei
    Wang, Hao
    Xin, Qiang
    Yang, Liyong
    Hong, Dengfeng
    Yang, Guangsheng
    THEORETICAL AND APPLIED GENETICS, 2020, 133 (02) : 479 - 490
  • [6] Fine mapping and candidate gene analysis of a seed glucosinolate content QTL, qGSL-C2, in rapeseed (Brassica napus L.)
    Ying Liu
    Xianming Zhou
    Min Yan
    Pengfei Wang
    Hao Wang
    Qiang Xin
    Liyong Yang
    Dengfeng Hong
    Guangsheng Yang
    Theoretical and Applied Genetics, 2020, 133 : 479 - 490
  • [7] QTL Mapping and Transcriptome Analysis Reveal Candidate Genes Regulating Seed Color in Brassica napus
    Liu, Fangying
    Chen, Hao
    Yang, Liu
    You, Liang
    Ju, Jianye
    Yang, Shujie
    Wang, Xiaolin
    Liu, Zhongsong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (11)
  • [8] Analysis of QTL for seed oil content in Brassica napus by association mapping and QTL mapping
    Fu, Ying
    Zhang, Dongqing
    Gleeson, Madeleine
    Zhang, Yaofeng
    Lin, Baogang
    Hua, Shuijin
    Ding, Houdong
    Frauen, Martin
    Li, Jiana
    Qian, Wei
    Yu, Huasheng
    EUPHYTICA, 2017, 213 (01)
  • [9] Analysis of QTL for seed oil content in Brassica napus by association mapping and QTL mapping
    Ying Fu
    Dongqing Zhang
    Madeleine Gleeson
    Yaofeng Zhang
    Baogang Lin
    Shuijin Hua
    Houdong Ding
    Martin Frauen
    Jiana Li
    Wei Qian
    Huasheng Yu
    Euphytica, 2017, 213
  • [10] Fine mapping and candidate gene analysis of a major locus controlling ovule abortion and seed number per silique in Brassica napus L.
    Yangmiao Jiao
    Kunpeng Zhang
    Guangqin Cai
    Kaidi Yu
    Olalekan Amoo
    Shaoqing Han
    Xiang Zhao
    Hao Zhang
    Limin Hu
    Bingrui Wang
    Chuchuan Fan
    Yongming Zhou
    Theoretical and Applied Genetics, 2021, 134 : 2517 - 2530