Instability of stationary solutions for double power nonlinear Schrodinger equations in one dimension

被引:0
作者
Fukaya, Noriyoshi [2 ,3 ,4 ]
Hayashi, Masayuki [1 ,2 ]
机构
[1] Kyoto Univ, Grad Sch Human & Environm Studies, Kyoto 6068501, Japan
[2] Waseda Univ, Waseda Res Inst Sci & Engn, Tokyo 1698555, Japan
[3] Osaka Metropolitan Univ, Osaka Cent Adv Math Inst, Osaka 5588585, Japan
[4] Tsuda Univ, Inst Math & Comp Sci, Tokyo 1878577, Japan
来源
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2025年 / 6卷 / 01期
基金
日本学术振兴会;
关键词
Nonlinear Schrodinger equation; Double power nonlinearities; Stationary solution; Instability; STANDING WAVES; GROUND-STATES; STABILITY; UNIQUENESS;
D O I
10.1007/s42985-024-00309-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a double power nonlinear Schrodinger equation possessing the algebraically decaying stationary solution phi(0) as well as exponentially decaying standing waves ei omega t phi omega(x) with omega>0. According to the general theory, stability properties of standing waves are determined by the derivative of omega bar right arrow M(omega):=1/2||phi omega||(2)(L2); namely ei omega t phi omega with omega>0 is stable if M '(omega)>0 and unstable if M '(omega)<0. However, the stability/instability of stationary solutions is outside the general theory from the viewpoint of spectral properties of linearized operators. In this paper we prove the instability of the stationary solution phi(0) in one dimension under the condition lim omega down arrow 0M '(omega)is an element of[-infinity,0). The key in the proof is the construction of the one-sided derivative of omega bar right arrow phi(omega) at omega=0, which is effectively used to construct the unstable direction.
引用
收藏
页数:23
相关论文
共 32 条
[21]   Instability of solitary wave solutions for derivative nonlinear Schrodinger equation in endpoint case [J].
Ning, Cui ;
Ohta, Masahito ;
Wu, Yifei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) :1671-1689
[22]  
OHTA M, 1995, ANN I H POINCARE-PHY, V62, P69
[23]  
Ohta M., 2014, SUT J. Math, V50, P399, DOI [10.55937/sut/1424794800, DOI 10.55937/SUT/1424794800]
[24]  
Ohta M., 1995, KODAI MATH J, V18, P68
[25]  
Pucci P, 1998, INDIANA U MATH J, V47, P501
[26]  
RIBEIRO JMG, 1991, ANN I H POINCARE-PHY, V54, P403
[27]  
Serrin J, 2000, INDIANA U MATH J, V49, P897
[28]   INSTABILITY OF NONLINEAR BOUND-STATES [J].
SHATAH, J ;
STRAUSS, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 100 (02) :173-190
[29]  
Vron L., 1981, Ann. Mat. Pura Appl, V127, P25, DOI [10.1007/BF01811717, DOI 10.1007/BF01811717]
[30]   LYAPUNOV STABILITY OF GROUND-STATES OF NONLINEAR DISPERSIVE EVOLUTION-EQUATIONS [J].
WEINSTEIN, MI .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (01) :51-67