Lignin deoxygenation for the production of sustainable aviation fuel blendstocks

被引:12
作者
Webber, Matthew S. [1 ]
Watson, Jamison [1 ]
Zhu, Jie [1 ]
Jang, Jun Hee [2 ,3 ]
Caglayan, Mustafa [2 ]
Heyne, Joshua S. [4 ,5 ]
Beckham, Gregg T. [2 ,3 ]
Roman-Leshkov, Yuriy [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] Renewable Resources & Enabling Sci Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA
[3] Ctr Bioenergy Innovat, Oak Ridge, TN 37831 USA
[4] Washington State Univ, Sch Engn & Appl Sci, Bioprod Sci & Engn Lab, Richland, WA USA
[5] Pacific Northwest Natl Lab, Energy Proc & Mat Div, Energy & Environm Directorate, Richland, WA USA
关键词
REDUCTIVE CATALYTIC FRACTIONATION; VAPOR-PHASE HYDRODEOXYGENATION; SUPERCRITICAL METHANOL; JET FUEL; LIGNOCELLULOSE FRACTIONATION; AROMATIC-HYDROCARBONS; RENEWABLE ALCOHOLS; WOODY BIOMASS; CORN STOVER; MAPLE WOOD;
D O I
10.1038/s41563-024-02024-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lignin is an abundant source of renewable aromatics that has long been targeted for valorization. Traditionally, the inherent heterogeneity and reactivity of lignin has relegated it to direct combustion, but its higher energy density compared with polysaccharides makes it an ideal candidate for biofuel production. This Review critically assesses lignin's potential as a substrate for sustainable aviation fuel blendstocks. Lignin can generate the necessary cyclic compounds for a fully renewable, sustainable aviation fuel when integrated with current paraffinic blends and can meet the current demand 2.5 times over. Using an energy-centric analysis, we show that lignin conversion technologies have the near-term potential to match the enthalpic yields of existing commercial sustainable aviation fuel production processes. Key factors influencing the viability of technologies for converting lignin to sustainable aviation fuel include lignin structure, delignification extent, depolymerization performance, and the development of stable and tunable deoxygenation catalysts. Lignin is an abundant source of renewable aromatic carbon and is of interest as a feedstock for sustainable fuels. This Review provides an overview of production technologies, jet fuel requirements, effects of lignin chemistry, depolymerization techniques, upgrading of bio-oils and challenges for catalysis using real biomass feedstocks.
引用
收藏
页码:1622 / 1638
页数:17
相关论文
共 165 条
[21]   A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis [J].
Bu, Quan ;
Lei, Hanwu ;
Zacher, Alan H. ;
Wang, Lu ;
Ren, Shoujie ;
Liang, Jing ;
Wei, Yi ;
Liu, Yupeng ;
Tang, Juming ;
Zhang, Qin ;
Ruan, Roger .
BIORESOURCE TECHNOLOGY, 2012, 124 :470-477
[22]   A Convergent Approach for a Deep Converting Lignin-First Biorefinery Rendering High-Energy-Density Drop-in Fuels [J].
Cao, Zhengwen ;
Dierks, Michael ;
Clough, Matthew Thomas ;
de Castro, Ilton Barros Daltro ;
Rinaldi, Roberto .
JOULE, 2018, 2 (06) :1118-1133
[23]   Hydrodeoxygenation of Guaiacol over Carbon-Supported Metal Catalysts [J].
Chang, Jie ;
Danuthai, Tanate ;
Dewiyanti, Silvia ;
Wang, Chuan ;
Borgna, Armando .
CHEMCATCHEM, 2013, 5 (10) :3041-3049
[24]   A polymer of caffeyl alcohol in plant seeds [J].
Chen, Fang ;
Tobimatsu, Yuki ;
Havkin-Frenkel, Daphna ;
Dixon, Richard A. ;
Ralph, John .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (05) :1772-1777
[25]   Producing jet fuel from biomass lignin: Potential pathways to alkyl benzenes and cycloalkanes [J].
Cheng, Feng ;
Brewer, Catherine E. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 72 :673-722
[26]  
Clarkson N., 2023, Virgin
[27]   Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover [J].
Collett, James R. ;
Billing, Justin M. ;
Meyer, Pimphan A. ;
Schmidt, Andrew J. ;
Remington, A. Brook ;
Hawley, Erik R. ;
Hofstad, Beth A. ;
Panisko, Ellen A. ;
Dai, Ziyu ;
Hart, Todd R. ;
Santosa, Daniel M. ;
Magnuson, Jon K. ;
Hallen, Richard T. ;
Jones, Susanne B. .
APPLIED ENERGY, 2019, 233 :840-853
[28]   Revealing the pathways of catalyst deactivation by coke during the hydrodeoxygenation of raw bio-oil [J].
Cordero-Lanzac, Tomas ;
Palos, Roberto ;
Hita, Idoia ;
Arandes, Jose M. ;
Rodriguez-Mirasol, Jose ;
Cordero, Tomas ;
Bilbao, Javier ;
Castano, Pedro .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 239 :513-524
[29]  
Cortright R. D., 2011, US patent, Patent No. 8053615
[30]   Sequential oxidation-depolymerization strategies for lignin conversion to low molecular weight aromatic chemicals [J].
Cui, Yanbin ;
Goes, Shannon L. ;
Stahl, Shannon S. .
CATALYSIS IN BIOMASS CONVERSION, 2021, 77 :99-136