Renormalization and running in the 2D CP (1) model

被引:0
作者
Diego Buccio [1 ]
John F. Donoghue [2 ]
Gabriel Menezes [3 ]
Roberto Percacci [4 ]
机构
[1] International School for Advanced Studies, Via Bonomea 265, Trieste
[2] INFN, Sezione di Trieste, Trieste
[3] Department of Physics, University of Massachusetts, Amherst, 01003, MA
[4] Instituto de Física Teórica, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271 — Bloco II, São Paulo, São Paulo
基金
美国国家科学基金会; 巴西圣保罗研究基金会;
关键词
Field Theories in Lower Dimensions; Renormalization and Regularization; Renormalization Group; Sigma Models;
D O I
10.1007/JHEP02(2025)146
中图分类号
学科分类号
摘要
We calculate the scattering amplitude in the two dimensional CP (1) model in a regularization scheme independent way. When using cutoff regularization, a new Feynman rule from the path integral measure is required if one is to preserve the symmetry. The physical running of the coupling with renormalization scale arises from a UV finite Feynman integral in all schemes. We reproduce the usual result with asymptotic freedom, but the pathway to obtaining the beta function can be different in different schemes. The results can be extended to the O(N) model, for all N. We also comment on the way that this model evades the classic argument by Landau against asymptotic freedom in non-gauge theories. © The Author(s) 2025.
引用
收藏
相关论文
共 31 条
  • [1] Eichenherr H., SU(N) Invariant Nonlinear Sigma Models, Nucl. Phys. B, 146, (1978)
  • [2] Golo V.L., Perelomov A.M., Solution of the Duality Equations for the Two-Dimensional SU(N) Invariant Chiral Model, Phys. Lett. B, 79, (1978)
  • [3] Cremmer E., Scherk J., The Supersymmetric Nonlinear Sigma Model in Four-Dimensions and Its Coupling to Supergravity, Phys. Lett. B, 74, (1978)
  • [4] Bardeen W.A., Lee B.W., Shrock R.E., Phase Transition in the Nonlinear σ Model in 2 + ϵ Dimensional Continuum, Phys. Rev. D, 14, (1976)
  • [5] Brezin E., Zinn-Justin J., Spontaneous Breakdown of Continuous Symmetries Near Two-Dimensions, Phys. Rev. B, 14, (1976)
  • [6] D'Adda A., Luscher M., Di Vecchia P., A 1/n Expandable Series of Nonlinear Sigma Models with Instantons, Nucl. Phys. B, 146, (1978)
  • [7] D'Adda A., Di Vecchia P., Luscher M., Confinement and Chiral Symmetry Breaking in CP <sup> n− 1</sup> Models with Quarks, Nucl. Phys. B, 152, (1979)
  • [8] Din A.M., Di Vecchia P., Zakrzewski W.J., Quantum Fluctuations in One Instanton Sector of the CP <sup> n− 1</sup> Model, Nucl. Phys. B, 155, (1979)
  • [9] Novikov V.A., Shifman M.A., Vainshtein A.I., Zakharov V.I., Two-Dimensional Sigma Models: Modeling Nonperturbative Effects of Quantum Chromodynamics, Phys. Rept, 116, (1984)
  • [10] Shifman M., Advanced topics in quantum field theory.: A lecture course