Study on the Fracture Extension Law of Hydraulic Fracturing in Shale Reservoirs

被引:0
|
作者
Liu, Ting [1 ]
Dong, Ye Shengfu [1 ]
Zhang, Zheng [1 ]
He, Minghui [1 ]
Zhao, Jinlin [1 ]
Zhang, Fashi [1 ]
Li, Jingrui [1 ]
Jiang, Tao [1 ]
机构
[1] Petrochina Changqing Oilfield Co, Oil Prod Plant 2, Qingcheng, Peoples R China
关键词
shale reservoir; hydraulic fracturing; fracture extension; rock mechanics anisotropy; physical simulation experiments; PROPAGATION; GAS; INITIATION;
D O I
10.1007/s10553-024-01790-y
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study aims to deeply investigate the fracture extension law of hydraulic fracturing in shale reservoirs, as well as the effects of rock mechanical anisotropy and engineering operation parameters on the fracture extension behavior. Matlab programming combined with the theoretical model of fracture extension was used to establish a computational model of the stress on the hole wall of a shale isotropic matrix shot hole, and the effects of injection displacement, horizontal stress difference, elastic modulus and Poisson's ratio on fracture extension were systematically analyzed through a series of true triaxial hydraulic fracturing physical simulation experiments. The results show that the injection completion can significantly reduce the fracture initiation pressure compared with the barehole completion, especially when the injection azimuth angle is 90 degrees, the fracture initiation pressure reaches the lowest value of 52.3 MPa. The anisotropy of rock mechanics has a significant effect on the fracture initiation pressure, especially when the horizontal stress difference coefficient is more than 0.13, the larger the ratio of Young's modulus is, the lower the fracture initiation pressure is, and the larger the value of Poisson's ratio is when the value of Poisson's ratio is more than 0.25, the larger the value of Poisson's ratio is, the higher the value of Poisson's ratio is. The larger the value of Poisson's ratio is above 0.25, the higher the crack initiation pressure is. The increase of injection displacement from 0.5 mL/min to 5 mL/min increased the crack length from 15.2 cm to 66.3 cm, and the crack extension rate from 0.51 cm/min to 2.21 cm/min, which significantly increased the crack extension rate and length. While the fracture extension rate decreased from 1.8 cm/min to 0.8 cm/min when the elastic modulus increased from 20 GPa to 60 GPa, the rock with high elastic modulus formed a smaller plastic zone near the fracture tip, which limited the fracture extension rate and morphology. This study provides a new theoretical basis for the fracture expansion mechanism of hydraulic fracturing in shale reservoirs, which is of great significance for optimizing hydraulic fracturing design and improving the efficiency of shale gas development.
引用
收藏
页码:1278 / 1288
页数:11
相关论文
共 50 条
  • [21] Simulation of fracture propagation law in fractured shale gas reservoirs under temporary plugging and diversion fracturing
    Xu, Hualei
    Jiang, Houshun
    Wang, Jie
    Wang, Ting
    Zhang, Liangjun
    PHYSICS OF FLUIDS, 2023, 35 (06)
  • [22] Numerical study on filtration law of supercritical carbon dioxide fracturing in shale gas reservoirs
    Luo, Zhifeng
    Wu, Lin
    Zhao, Liqiang
    Zhang, Nanlin
    Chen, Weihua
    Liang, Chong
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2021, 11 (05): : 871 - 886
  • [23] Fracture propagation mechanism experiment of hydraulic fracturing in natural shale
    Zhang, Shicheng
    Guo, Tiankui
    Zhou, Tong
    Zou, Yushi
    Mu, Songru
    Shiyou Xuebao/Acta Petrolei Sinica, 2014, 35 (03): : 496 - 503+518
  • [24] The hydraulic fracturing with multiple influencing factors in carbonate fracture-cavity reservoirs
    Qiao, Jiangmei
    Tang, Xuhai
    Hu, Mengsu
    Rutqvist, Jonny
    Liu, Zhiyuan
    COMPUTERS AND GEOTECHNICS, 2022, 147
  • [25] Numerical Analysis on the Formation of Fracture Network during the Hydraulic Fracturing of Shale with Pre-Existing Fractures
    He, Jianming
    Zhang, Zhaobin
    Li, Xiao
    ENERGIES, 2017, 10 (06)
  • [26] An experimental investigation into the characteristics of hydraulic fracturing and fracture permeability after hydraulic fracturing in granite
    Zhang, Yanjun
    Ma, Yueqiang
    Hu, Zhongjun
    Lei, Honglei
    Bai, Lin
    Lei, Zhihong
    Zhang, Qian
    RENEWABLE ENERGY, 2019, 140 : 615 - 624
  • [27] Fracturing Gels as Analogs to Understand Fracture Behavior in Shale Gas Reservoirs
    Zheng Li
    Jingyi Wang
    Ian D. Gates
    Rock Mechanics and Rock Engineering, 2020, 53 : 4345 - 4355
  • [28] Experimental Study of Hydraulic Fracturing for Unconsolidated Reservoirs
    Yan, Chuanliang
    Chen, Yong
    Chen, Tianqing
    Cheng, Yuanfang
    Yan, Xinjiang
    ROCK MECHANICS AND ROCK ENGINEERING, 2022, 55 (06) : 3399 - 3424
  • [29] Fracturing Gels as Analogs to Understand Fracture Behavior in Shale Gas Reservoirs
    Li, Zheng
    Wang, Jingyi
    Gates, Ian D.
    ROCK MECHANICS AND ROCK ENGINEERING, 2020, 53 (10) : 4345 - 4355
  • [30] Numerical investigation of hydraulic fracturing in transversely isotropic shale reservoirs based on the discrete element method
    Chong, Zhaohui
    Karekal, Shivakumar
    Li, Xuehua
    Hou, Peng
    Yang, Guanyu
    Liang, Shun
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2017, 46 : 398 - 420