Sub-3 nm Pt3Ni nanoparticles for urea-assisted water splitting

被引:8
作者
Lu, Shun [1 ]
Zheng, Xingqun [2 ]
Jiang, Kaixin [3 ]
Wang, Qingmei [4 ]
Wang, Xingzu [1 ]
Shahzad, Muhammad Wakil [3 ]
Yin, Fengjun [1 ]
Xu, Ben Bin [3 ]
Hua, Qingsong [5 ]
Liu, Hong [1 ]
机构
[1] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
[2] Chongqing Univ, Coll Chem & Chem Engn, Chongqing 400044, Peoples R China
[3] Northumbria Univ, Fac Engn & Environm, Mech & Construct Engn, Newcastle Upon Tyne, England
[4] Guizhou Univ, Sch Chem & Chem Engn, Guiyang 550025, Peoples R China
[5] Beijing Normal Univ, Coll Nucl Sci & Technol, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Urea oxidation reaction; Sub-3 nm nanoparticles; Platinum-nickel alloy; Theoretical calculations; Electron transfer;
D O I
10.1007/s42114-025-01279-0
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The development of durable efficient electrocatalysts is crucial to alleviate the sluggish kinetics of electrocatalytic urea oxidation reaction (UOR) for energy-saving water splitting. Small Pt-based intermetallic compounds exhibit promising characteristics as UOR catalysts due to their distinctive electronic and geometric structures. This work reported a surfactant-assisted shape evolution method for the controlled synthesis of sub-3 nm Pt3Ni nanoparticles on carbon black to achieve efficient electrocatalytic UOR. The synthesized catalyst features a uniform dodecahedral structure, maximizing Ni utilization and providing multiple active sites for UOR. The Pt3Ni catalyst displays the lower working potential of 1.44 V versus reversible hydrogen electrode, outperforming Pt/C (1.78 V) at 10 mA cm-2, with a smaller Tafel slope of 78.1 mV dec-1, while maintaining exceptional stability during 100 h of continuous urea-assisted water electrolysis. Notably, UOR-boosted system needs only 1.36 V for 10 mA cm-2, significantly lower than the 1.62 V required for traditional water splitting, highlighting its energy-efficient potential for H2 production. Furthermore, theoretical studies indicate that Pt3Ni(111) facilitates the adsorption and activation of urea molecules more effectively than Pt(111), avoiding competition from hydroxyl adsorption. The unique polyhedron structure of the sub-3 nm Pt3Ni catalyst provides the catalytic active dual-sites, further promoting urea interaction. To the best of knowledge, this study represents the first report of Pt-M materials being utilized for the UOR, thereby expanding the application range of Pt-based alloys in urea electrocatalysis.
引用
收藏
页数:12
相关论文
共 42 条
[1]   Low loading platinum dispersed on Ni/C nanoparticles as high active catalysts for urea electrooxidation reaction [J].
Barbosa, Joseane R. ;
Paranhos, Caio H. ;
Alves, Odivaldo C. ;
Checca, Noemi R. ;
Serna, Jilder P. ;
Rossi, Andre L. ;
Silva, Julio Cesar M. .
ELECTROCHIMICA ACTA, 2020, 355
[2]   Structural, Ordering, and Magnetic Properties of PtNi Nanoalloys Explored by Density Functional Theory and Stability Descriptors [J].
Cardona, Juan Esteban Montoya ;
Salichon, Antoine ;
Tarrat, Nathalie ;
Gaudry, Emilie ;
Loffreda, David .
JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (36) :18043-18057
[3]   Achieving superior methanol oxidation electrocatalytic performance by surface reconstruction of PtNi nanoalloys during acid etching process [J].
Chen, Xu ;
Zhao, Jinyu ;
Lian, Jie ;
Wang, Xiaomin .
GREEN CHEMISTRY, 2023, 25 (08) :3198-3207
[4]   Fcc/hcp PtNi heterostructured alloy nanocrystals with ultrathin Pt shell for enhanced catalytic performance towards hydrogen evolution reaction [J].
Cheng, Tianchun ;
Wang, Zhi ;
Fang, Shuiyang ;
Jin, Hui ;
Zhu, Chongzhi ;
Zhao, Shuangyang ;
Zhuang, Guilin ;
Chen, Qiaoli ;
Zhu, Yihan .
NANO RESEARCH, 2024, 17 (11) :9822-9829
[5]   Carbon black produced by plasma in benzene solution applied as the conductive agent in lithium secondary batteries [J].
Choi, Go Bong ;
Kim, Yoong-Ahm ;
Hong, Daeseon ;
Choi, Yunji ;
Yeon, Sun-Hwa ;
Park, Young-Kwon ;
Lee, Gyeong-Geun ;
Lee, Heon ;
Jung, Sang-Chul .
CARBON, 2023, 205 :444-453
[6]   Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation [J].
Gao, Xintong ;
Bai, Xiaowan ;
Wang, Pengtang ;
Jiao, Yan ;
Davey, Kenneth ;
Zheng, Yao ;
Qiao, Shi-Zhang .
NATURE COMMUNICATIONS, 2023, 14 (01)
[7]   Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst [J].
Geng, Shi-Kui ;
Zheng, Yao ;
Li, Shan-Qing ;
Su, Hui ;
Zhao, Xu ;
Hu, Jun ;
Shu, Hai-Bo ;
Jaroniec, Mietek ;
Chen, Ping ;
Liu, Qing-Hua ;
Qiao, Shi-Zhang .
NATURE ENERGY, 2021, 6 (09) :904-912
[8]   Electronic Structure Modulation Via Iron-Incorporated NiO to Boost Urea Oxidation/Oxygen Evolution Reaction [J].
He, Guang-Yuan ;
He, Xiong-Fei ;
Mu, Hui-Ying ;
Su, Ran ;
Zhou, Yue ;
Meng, Chao ;
Li, Fa-Tang ;
Chen, Xue-Min .
INORGANIC CHEMISTRY, 2024, 63 (17) :7937-7945
[9]   Urea electrooxidation: current development and understanding of Ni-based catalysts [J].
Hu, Xinrang ;
Zhu, Jiaye ;
Li, Jiangfeng ;
Wu, Qingsheng .
CHEMELECTROCHEM, 2020, 7 (15) :3211-3228
[10]   Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction [J].
Jin, Hui ;
Xu, Zhewei ;
Hu, Zhi-Yi ;
Yin, Zhiwen ;
Wang, Zhao ;
Deng, Zhao ;
Wei, Ping ;
Feng, Shihao ;
Dong, Shunhong ;
Liu, Jinfeng ;
Luo, Sicheng ;
Qiu, Zhaodong ;
Zhou, Liang ;
Mai, Liqiang ;
Su, Bao-Lian ;
Zhao, Dongyuan ;
Liu, Yong .
NATURE COMMUNICATIONS, 2023, 14 (01)