Detection of sedentary time and bouts using consumer-grade wrist-worn devices: a hidden semi-Markov model

被引:0
作者
Salim, Agus [1 ,2 ,3 ]
Brakenridge, Christian J. [4 ,5 ,6 ]
Lekamlage, Dulari Hakamuwa [1 ,2 ]
Howden, Erin [1 ]
Grigg, Ruth [5 ]
Dillon, Hayley T. [1 ,7 ]
Bondell, Howard D. [3 ]
Simpson, Julie A. [2 ]
Healy, Genevieve N. [8 ]
Owen, Neville [5 ,6 ]
Dunstan, David W. [5 ,7 ]
Winkler, Elisabeth A. H. [8 ]
机构
[1] Baker Heart & Diabet Inst, Melbourne, Australia
[2] Univ Melbourne, Melbourne Sch Populat & Global Hlth, Ctr Epidemiol & Biostat, Melbourne, Australia
[3] Univ Melbourne, Sch Math & Stat, Melbourne, Australia
[4] South Eastern Finland Univ Appl Sci, Act Life Lab, Mikkeli, Finland
[5] Baker Heart & Diabet Inst, Phys Act Lab, Melbourne, Australia
[6] Swinburne Univ Technol, Ctr Urban Transit, Melbourne, Australia
[7] Deakin Univ, Inst Phys Act & Nutr, Melbourne, Vic, Australia
[8] Univ Queensland, Sch Human Movement & Nutr Sci, Brisbane, Australia
基金
澳大利亚国家健康与医学研究理事会;
关键词
Machine learning; Step counts; Heart rate; Bouts; Wearables data; PHYSICAL-ACTIVITY; HIP; ACCELEROMETERS; VALIDATION; VALIDITY;
D O I
10.1186/s12874-024-02311-5
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background Wrist-worn data from commercially available devices has potential to characterize sedentary time for research and for clinical and public health applications. We propose a model that utilizes heart rate in addition to step count data to estimate the proportion of time spent being sedentary and the usual length of sedentary bouts. Methods We developed and trained two Hidden semi-Markov models, STEPHEN (STEP and Heart ENcoder) and STEPCODE (STEP enCODEr; a steps-only based model) using consumer-grade Fitbit device data from participants under free living conditions, and validated model performance using two external datasets. We used the median absolute percentage error (MDAPE) to measure the accuracy of the proposed models against research-grade activPAL device data as the referent. Bland-Altman plots summarized the individual-level agreement with activPAL. Results In OPTIMISE cohort, STEPHEN's estimates of the proportion of time spent sedentary had significantly (p < 0.001) better accuracy (MDAPE [IQR] = 0.15 [0.06-0.25] vs. 0.23 [0.13-0.53)]) and agreement (Bias Mean [SD]=-0.03[0.11] vs. 0.14 [0.11]) than the proprietary software, estimated the usual sedentary bout duration more accurately (MDAPE[IQR] = 0.11[0.06-0.26] vs. 0.42[0.32-0.48]), and had better agreement (Bias Mean [SD] = 3.91[5.67] minutes vs. -11.93[5.07] minutes). With the ALLO-Active dataset, STEPHEN and STEPCODE did not improve the estimation of proportion of time spent sedentary, but STEPHEN estimated usual sedentary bout duration more accurately than the proprietary software (MDAPE[IQR] = 0.19[0.03-0.25] vs. 0.36[0.15-0.48]) and had smaller bias (Bias Mean[SD] = 0.70[8.89] minutes vs. -11.35[9.17] minutes). Conclusions STEPHEN can characterize the proportion of time spent being sedentary and usual sedentary bout length. The methodology is available as an open access R package available from https://github.com/limfuxing/stephen/. The package includes trained models, but users have the flexibility to train their own models.
引用
收藏
页数:13
相关论文
共 48 条
[1]   MEASUREMENT IN MEDICINE - THE ANALYSIS OF METHOD COMPARISON STUDIES [J].
ALTMAN, DG ;
BLAND, JM .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1983, 32 (03) :307-317
[2]   Using Fitbit as an mHealth Intervention Tool to Promote Physical Activity: Potential Challenges and Solutions [J].
Balbim, Guilherme M. ;
Marques, Isabela G. ;
Marquez, David X. ;
Patel, Darshilmukesh ;
Sharp, Lisa K. ;
Kitsiou, Spyros ;
Nyenhuis, Sharmilee M. .
JMIR MHEALTH AND UHEALTH, 2021, 9 (03)
[3]   CHAP-Adult: A Reliable and Valid Algorithm to Classify Sitting and Measure Sitting Patterns Using Data From Hip-Worn Accelerometers in Adults Aged 35+ [J].
Bellettiere, John ;
Nakandala, Supun ;
Tuz-Zahra, Fatima ;
Winkler, Elisabeth A. H. ;
Hibbing, Paul R. ;
Healy, Genevieve N. ;
Dunstan, David W. ;
Owen, Neville ;
Greenwood-Hickman, Mikael Anne ;
Rosenberg, Dori E. ;
Zou, Jingjing ;
Carlson, Jordan A. ;
Di, Chongzhi ;
Dillon, Lindsay W. ;
Jankowska, Marta M. ;
LaCroix, Andrea Z. ;
Ridgers, Nicola D. ;
Zablocki, Rong ;
Kumar, Arun ;
Natarajan, Loki .
JOURNAL FOR THE MEASUREMENT OF PHYSICAL BEHAVIOUR, 2022, 5 (04) :215-223
[4]   Effectiveness of Fitbit Activity Prompts in Reducing Sitting Time and Increasing Physical Activity in University Employees :A Randomized Controlled Trial [J].
Boudreaux, Benjamin D. ;
Schenck, Julie A. ;
Chu, Zhixuan ;
Schmidt, Michael D. .
JOURNAL FOR THE MEASUREMENT OF PHYSICAL BEHAVIOUR, 2022, 5 (03) :178-184
[5]   Sitting less and moving more for improved metabolic and brain health in type 2 diabetes: 'OPTIMISE your health' trial protocol [J].
Brakenridge, Christian J. ;
Gardiner, Paul A. ;
Grigg, Ruth V. ;
Winkler, Elisabeth A. H. ;
Fjeldsoe, Brianna S. ;
Schaumberg, Mia A. ;
Owen, Neville ;
Eakin, Elizabeth G. ;
Biddle, Stuart J. H. ;
Moodie, Marjory ;
Daly, Robin M. ;
Green, Daniel J. ;
Cohen, Neale ;
Gray, Len ;
Comans, Tracy ;
Buman, Matthew P. ;
Goode, Ana D. ;
Nguyen, Phuong ;
Gao, Lan ;
Healy, Genevieve N. ;
Dunstan, David W. .
BMC PUBLIC HEALTH, 2022, 22 (01)
[6]   Accelerometer-measured sedentary time and cardiometabolic biomarkers: A systematic review [J].
Brocklebank, Laura A. ;
Falconer, Catherine L. ;
Page, Angie S. ;
Perry, Rachel ;
Cooper, Ashley R. .
PREVENTIVE MEDICINE, 2015, 76 :92-102
[7]  
Caldwell A.R., 2022, PREPRINT, DOI DOI 10.31234/OSF.IO/TY8DE
[8]   Sensitivity to Change of Objectively-Derived Measures of Sedentary Behavior [J].
Chastin, Sebastien F. M. ;
Winkler, Elisabeth A. H. ;
Eakin, Elizabeth G. ;
Gardiner, Paul A. ;
Dunstan, David W. ;
Owen, Neville .
MEASUREMENT IN PHYSICAL EDUCATION AND EXERCISE SCIENCE, 2015, 19 (03) :138-147
[9]   Wearable Health Devices-Vital Sign Monitoring, Systems and Technologies [J].
Dias, Duarte ;
Silva Cunha, Joao Paulo .
SENSORS, 2018, 18 (08)
[10]   Preventing the adverse cardiovascular consequences of allogeneic stem cell transplantation with a multi-faceted exercise intervention: the ALLO-Active trial protocol [J].
Dillon, Hayley T. ;
Saner, Nicholas J. ;
Ilsley, Tegan ;
Kliman, David ;
Spencer, Andrew ;
Avery, Sharon ;
Dunstan, David W. ;
Daly, Robin M. ;
Fraser, Steve F. ;
Owen, Neville ;
Lynch, Brigid M. ;
Kingwell, Bronwyn A. ;
La Gerche, Andre ;
Howden, Erin J. .
BMC CANCER, 2022, 22 (01)