Molecular modeling, synthesis and biological evaluation of caffeic acid based Dihydrofolate reductase inhibitors

被引:0
作者
Sehrawat, Renu [1 ]
Pasrija, Ritu [2 ]
Rathee, Priyanka [3 ]
Kumari, Deepika [2 ]
Khatkar, Anurag [4 ]
机构
[1] KR Mangalam Univ, Sch Med & Allied Sci, Gurugram 122103, Haryana, India
[2] Maharshi Dayanand Univ, Dept Biochem, Rohtak 124001, Haryana, India
[3] Geeta Univ, Geeta Inst Pharm, Panipat 132145, Haryana, India
[4] Maharshi Dayanand Univ, Fac Pharmaceut Sci, Lab Preservat Technol & Enzyme Inhibit Studies, Rohtak 124001, India
关键词
Dihydrofolate reductase inhibitors; Anticancer; Antimicrobial; Caffeic acid; Drug design; Molecular docking; Antimicrobial resistance; ACCURATE DOCKING; DRUG DISCOVERY; RESISTANCE; METHOTREXATE; GLIDE; PERMEABILITY; MECHANISM; SERIES;
D O I
10.1186/s13065-024-01355-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dihydrofolate reductase (DHFR) is an enzyme that plays a crucial role in folate metabolism, which is essential for cell growth and division. DHFR has been identified as a molecular target for numerous diseases due to its significance in various biological processes. DHFR inhibitors can disrupt folate metabolism by inhibiting DHFR, leading to the inhibition of cell growth. So, a series of caffeic acid derivatives were designed, synthesized, characterized and evaluated for their in vitro ability to inhibit DHFR, as well as their antimicrobial and anticancer properties. Among all synthesized compounds, compound CE11 exhibited the highest DHFR inhibitory activity, with an IC50 value of 0.048 mu M, which is approximately four times more potent than methotrexate. Compound CE11 exhibited similar docking performance to methotrexate, binding to the same site and engaging key residues such as Glh30, Phe31, Phe34, and Ser59. It also fit snugly in the hydrophobic pocket of modeled protein. Moreover, substantial hydrophobic interactions were noted between the ligand and the hydrophobic amino acid residues of DHFR. This effectively secured the derivative within the restricted substrate cavity. Furthermore, compound CE11 demonstrated a significant anticancer activity against MCF-7 breast cancer cell line, with an IC50 value of 5.37 +/- 0.16 mu M. Compounds CE3 and CE15 displayed better antibacterial activity compared to trimethoprim and comparable to ampicillin against the gram-positive bacteria S. aureus. Moreover, compounds CE3 and CE15 have shown better antibacterial activity than standard trimethoprim, ampicillin and tetracycline against the gram-negative bacteria, particularly P. aeruginosa and E. coli. Molecular docking analysis of CE3 revealed that it firmly entrapped into the active site of enzyme through hydrophobic interaction with hydrophobic residues. Additionally, it forms hydrogen bonds with important amino acid residues Ala7, Asn18, and Thr121 with excellent docking score and binding energy (-9.9, -71.77 kcal/mol). These interactions might be contributed to the significant DHFR inhibition and antimicrobial activity. The generated model holds potential value in facilitating the development of a novel category of DHFR inhibitors as anticancer and antimicrobial agents.
引用
收藏
页数:22
相关论文
共 62 条
[1]  
admetmesh.scbdd, About us
[2]   Coumarins and Coumarin-Related Compounds in Pharmacotherapy of Cancer [J].
Akkol, Esra Kupeli ;
Genc, Yasin ;
Karpuz, Busra ;
Sobarzo-Sanchez, Eduardo ;
Capasso, Raffaele .
CANCERS, 2020, 12 (07) :1-25
[3]  
[Anonymous], 2015, Maestro
[4]  
[Anonymous], 2007, Indian Pharmacopoeia, VI, P37
[5]  
[Anonymous], 2015, Glide, Version 6.6
[6]   Combined 3D-QSAR and molecular docking study on 7,8-dialkyl-1,3-diaminopyrrolo-[3,2-f] Quinazoline series compounds to understand the binding mechanism of DHFR inhibitors [J].
Aouidate, Adnane ;
Ghaleb, Adib ;
Ghamali, Mounir ;
Chtita, Samir ;
Choukrad, M'barek ;
Sbai, Abdelouahid ;
Bouachrine, Mohammed ;
Lakhlifi, Tahar .
JOURNAL OF MOLECULAR STRUCTURE, 2017, 1139 :319-327
[7]   Design, Synthesis, and Antimicrobial Evaluation of a New Series of N-Sulfonamide 2-Pyridones as Dual Inhibitors of DHPS and DHFR Enzymes [J].
Azzam, Rasha A. ;
Essam, Rasha E. ;
Elgemeie, Galal H. .
ACS OMEGA, 2020, 5 (18) :10401-10414
[8]   Novel aspects of resistance to drugs targeted to dihydrofolate reductase and thymidylate synthase [J].
Banerjee, D ;
Mayer-Kuckuk, P ;
Capiaux, G ;
Budak-Alpdogan, T ;
Gorlick, R ;
Bertino, JR .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2002, 1587 (2-3) :164-173
[9]   Resistance mechanisms to methotrexate in tumors [J].
Bertino, JR ;
Goker, E ;
Gorlick, R ;
Li, WW ;
Banerjee, D .
STEM CELLS, 1996, 14 (01) :5-9
[10]   Dihydrofolate reductase inhibitors: patent landscape and phases of clinical development (2001-2021) [J].
Bhagat, Kavita ;
Kumar, Nitish ;
Gulati, Harmandeep Kaur ;
Sharma, Aanchal ;
Kaur, Amandeep ;
Singh, Jatinder Vir ;
Singh, Harbinder ;
Bedi, Preet Mohinder Singh .
EXPERT OPINION ON THERAPEUTIC PATENTS, 2022, 32 (10) :1079-1095